CONFIDENTIAL — ORACLE RESTRICTED

Oracle® Communications

Diameter Signaling Router
DCA Programmer’s Guide

Release 8.2

E89013 Revision 01

January 2018

ORACLE

CONFIDENTIAL — ORACLE RESTRICTED

CONFIDENTIAL — ORACLE RESTRICTED

Oracle® Communications Diameter Signaling Router DCA Programmer’s Guide, DSR Release 8.2
Copyright © 2011, 2018, Oracle and/or its affiliates. All rights reserved.

This software and related documentation are provided under a license agreement containing restrictions on use and disclosure
and are protected by intellectual property laws. Except as expressly permitted in your license agreement or allowed by law, you
may not use, copy, reproduce, translate, broadcast, modify, license, transmit, distribute, exhibit, perform, publish, or display any
part, in any form, or by any means. Reverse engineering, disassembly, or decompilation of this software, unless required by law
for interoperability, is prohibited.

The information contained herein is subject to change without notice and is not warranted to be error-free. If you find any errors,
please report them to us in writing.

If this is software or related documentation that is delivered to the U.S. Government or anyone licensing it on behalf of the U.S.
Government, then the following notice is applicable:

U.S. GOVERNMENT END USERS: Oracle programs, including any operating system, integrated software, any programs
installed on the hardware, and/or documentation, delivered to U.S. Government end users are "commercial computer software”
pursuant to the applicable Federal Acquisition Regulation and agency-specific supplemental regulations. As such, use,
duplication, disclosure, modification, and adaptation of the programs, including any operating system, integrated software, any
programs installed on the hardware, and/or documentation, shall be subject to license terms and license restrictions applicable to
the programs. No other rights are granted to the U.S. Government.

This software or hardware is developed for general use in a variety of information management applications. It is not developed
or intended for use in any inherently dangerous applications, including applications that may create a risk of personal injury. If
you use this software or hardware in dangerous applications, then you shall be responsible to take all appropriate fail-safe,
backup, redundancy, and other measures to ensure its safe use. Oracle Corporation and its affiliates disclaim any liability for
any damages caused by use of this software or hardware in dangerous applications.

Oracle and Java are registered trademarks of Oracle and/or its affiliates. Other names may be trademarks of their respective
owners.

Intel and Intel Xeon are trademarks or registered trademarks of Intel Corporation. All SPARC trademarks are used under license
and are trademarks or registered trademarks of SPARC International, Inc. AMD, Opteron, the AMD logo, and the AMD Opteron
logo are trademarks or registered trademarks of Advanced Micro Devices. UNIX is a registered trademark of The Open Group.

This software or hardware and documentation may provide access to or information about content, products, and services from
third parties. Oracle Corporation and its affiliates are not responsible for and expressly disclaim all warranties of any kind with
respect to third-party content, products, and services unless otherwise set forth in an applicable agreement between you and
Oracle. Oracle Corporation and its affiliates will not be responsible for any loss, costs, or damages incurred due to your access
to or use of third-party content, products, or services, except as set forth in an applicable agreement between you and Oracle.

DCA Programmer’s Guide, E89013 Revision 01, January 2018 2

CONFIDENTIAL — ORACLE RESTRICTED

Table of Contents

TabIE Of CONTENTS ..o 3
Sy 0 N 1= 1 0] =2 PR 7
[ES]) T U =T PP PPPPPPPPPPPP 7
IO [0 o LU Yo 1 oY o [P PP PPPPPPPPPP 10
L1.1 RETEIENCES ...ttt ettt e oo s ettt e e e e e s a bbb e et e e e e e e s nb b e e e e e e e e e e e nnbrrrreeeens 10

I €[1SS T o SRR 10

O B =T 0o 1T o] (o T YRR 11

1.4 WARNING on Copying and Pasting Code from this GUIdecccuiiiiiiiiiiiiii e, 11

2. DCA Activation and DeacCtiVatiONccoeeoeiieeieeeeeeeee e 12
% T B T @ N Yo 117 11T PR 12
2.1.1 DCA FrameWOrk ACHVALIONociiiiiiiiiiee ettt e e e e e e e e e s s s e e e e e e e e anes 13

P I 107 N X od 1) V7 1o o PSSP 13

2.1.3 POSt-ACtivation DCA STALEcoeiiiiiiiiiie et e e e e e e e e e s s snnbeeeeeeaeeeeanes 14

A B L O A B =T Yo 11V 1o o PR 14
2.2.1 DCA DE-ACHVALION ...ttt e e e et e e e e e e e s bbb e e e e e e e s e annbenneeeaeeeeaanns 14

2.2.2 DCA Framework DE-ACHVALIONcooiiiiiiiiiiiiiiiiee ettt e e sireeee e e e e e aaes 14

3. DCA Provisioning — The BIacKIiSt DCA ..o 14
0 A I o TS = = T 1) 0L PRSP 15

B T o 1= (=0 [L= (PSP 15

3.3 TRE PIOCESS ...ttt e oo ettt et e e e e e s bbb b e et e e e e e e e e bbb e et e e e e e e e annnreees 15
3.3.1 Step 1. Configure DCA General Options and Behaviorccccccccvvviviice 15

3.3.2 Step 2. Create New Development Application Version..........ccccccccvvvviviiiiiiiiiiiiececeeee, 15

3.3.3 Step 3: Define the Configuration Data Structure...........cccccvevvviiiiiiieee 17

3.3.4 Step 4: Provision the Configuration Data............ccueeiiiiiiiiiiiiiee e 18

3.3.5 Step 5: Provision the BUSINESS LOGICccciiiiiiiiiiiiieiiiiiee ettt 19

3.3.5.1 Where is the Perl Script Being Executed?ccceccvieeieiiieeecciiee e, 20

3.3.5.2 How Do the Event Handlers Get Invoked?.........cccceoverrciiineenien e, 20

3.3.5.3 How Does DCA Configuration Data Get Accessed?........cccceeevrireeecrereeennnen. 20

3.3.5.4 What is the Main Part GOOd FOIr?.......ccceeciiiiiieiiir et 20

3.3.6 Step 6: Render Flow Control Chart, Save Script, Check Syntaxcccccovvuveiiiiinnnnne 21

3.3.7 Step 7: TesSt the DCA VEISIONcuuiiiiiiiiie ittt sbeee e st e e sbaeeeean 22

3.3.8 Step 8: Promote the DCA Version to Production State.............ooccuveeeieieeiiniiiiiieneeeees 22

4. DCA LITECYCIE e 23
5. Developing Stateful DCA ... 26
6. A Stateful DCA Using the U-SBR INfrastruCtUre..........coouvuiiiiiiiiiicee e 26

DCA Programmer’s Guide, E89013 Revision 01, January 2018 3

CONFIDENTIAL — ORACLE RESTRICTED

6.1 The COUNULR DCAottt sttt et e e st e s e r e e s e e nnn e e e 26
LS o (=T (=T U1y = RS 26
8.3 THE PrOCESS ...ooiiieitii ettt ettt ettt e e Rt sa e e e R e e Rt e s R e e e an e e e e e E e e nn e e 27
6.3.1 Step 1: Configure DCA Global Options and Behavior...........cccoocvveeiiiiieeiniieee e 27

6.3.2 Step 2: Create a New Development VEISIONccovciiieiiiiiee et 28

6.3.3 Step A: Configure the U-SBR DBS........ccooiiiiiiiiiiiieiieee ettt 28
6.3.3.1 Step A.1: Servers Configurationcccccveeeeiiiiieeciieee e 29

6.3.3.2 Step A.2: Server Group Configuration........cccccceeeecciiieeicciiee e, 29

6.3.3.3 Step A.3: Places Configurationcccoccueeieiiiiie s 30

6.3.3.4 Step A.4: Place Associations Configuration........c..cccceeeevieeieniieee e, 31

6.3.3.5 Step A.5: Resource Domain Configuration.........ccccccceeeeiiieeecciieeeecieee e, 32

6.3.3.6 Step A.6: SBR Database Configurationcccccccevvvciiiiiniiiee e, 34

6.3.4 Step 3: Define the Configuration Data Schemacccooe e, 35

6.3.5 Step 4: Provision the Configuration Datac.coe oo e e, 35

6.3.6 Step 5: Provision DCA BUSINESS LOGICccooeieie ittt 35
6.3.6.1 What Does a State Consist Of?.......ccoviiiriiiiniieniiceieceee e 39

6.3.6.2 What are Asynchronous API Calls and Callbacks?.........ccccccevvveeereiiiiicinnrnnnnnn. 40

6.3.6.3 How is the U-SBR State Returned to the Perl Script?......cccccevvrieiiviieeeencnnnen. 40

6.3.6.4 What is Concurrent in a concurrentUpdate?ccccceeeeiviiiireeeeeeeececnnreeennn. 40

6.3.7 Step 6: Render the FIow Control Chart...........coociiiiiiiiiiiii e 42

6.3.8 Step B: Logical to Physical U-SBR DB Name Mapping........cccoocuveeeiriiieeiniieee e 42

6.3.9 Step 7: TeStthe DCA VEISIONoiiiiiiiii ettt 43
6.3.10 Step 8: Promote the DCA Version t0 ProducCtionceeveeeiniiciiiieeiee e ciieeeee e e 43

7. MONITOIING DA L. et e e e e e e e e e e e e e e et e e e e e e e e e e attaaaeaeaeaas 43
8. DCA USING CUSTOM MEALS ... 44
8.1 TRE RAIE DCA ...ttt e oo b et e e e et et e e e ot bt e e e st bt e e e e bb e e e e abb e e e e anbbe e e e abaeeeeaa 44
S T o 1= (=T UL (=PSRRI 44
8.3 TN PIOCESS ...ciiieiee ittt ettt e e sttt e e st e e e e st et e e sn e e e e e an e e e e ar e e e e e e e e 44
8.3.1 Step I: Differentiate @ C-MEALcoooiiiiiiiii 45

8.3.2 Step 1: Configure DCA General Options and Behavior ..., 45

8.3.3 Step 2: Create a New Development VErSIiONcoouuiiiiieiaaiiiiiieee e eiiieeee e e 45

8.3.4 Step 3: Define the Configuration Data Schemaccccciiiiiiiiii e 45

8.3.5 Step 4: Provision the Configuration Data............ccceeeiiiiiiiiiiiieee e 45

8.3.6 Step 5: Provision DCA BUSINESS LOGIC ...cceeiuvviieiiiiieeiiiiieeeitiee ettt e staee e siaeee e 45

8.3.7 Step 6: Render the FIow Control Chartcoooiiiieiiiiiieiiie e 46

8.3.8 Step 7: TeSt the DCA VEISIONcuuiiiiiiiiee ittt ettt e e sbaee e e sbeeeeean 46

DCA Programmer’s Guide, E89013 Revision 01, January 2018 4

CONFIDENTIAL — ORACLE RESTRICTED

8.3.9 Step 8: Promote the DCA Version to Productionccceeveveeiiiiiiiieeieee e cciiiieee e e e 48

0. GUI OVBIVIBW ..ttt ettt et e e e e et e e et e e et e e e et e e et e e st e e et e esteeerneeesnneees 49

L N0] @ o [11=] =10 oL PR PRTRTPPRR 49

LS B2 N[B Yox =T o PP 49

9.2.1 CONfIQUIAtION SCIEEN.......uuiiiiiiee e e e ittt e e e e e s e e e e e e e s e s e e e ee e e s s aanbaeeeaaeessanstnnneeeaaeeesanns 50

9.2.2 CUSIOM MEALS.....cciiiiieeeeee 51

9.2.2.1 VieW CUSTOM IMEALS ..ottt ettt e e e e e s e e e e e s e anenee 51

9.2.2.2 Configure the Counter Custom MEAL Template......ccccoevveercrerriieincieesneeennne 51

9.2.2.3 Configure the Basic Custom MEAL Template.......ccccoeeevviieiieicieeeeciee e, 52

9.2.2.4 Configure the Rate Custom MEAL Template.....cccccevveerreerrcierniieenieenieeeee 53

9.2.2.5 Configure the Event Custom MEAL Template.......ccoeeeeeiieeeeicrieeeeciee e, 54

9.2.3 General OPLIONS SCIEEMciuiiii ittt ettt ettt et e e bt e e st b e e e sbr e e e e anbreeeeabreeeeaas 55

9.2.4 Trial MPS ASSIGNMENT SCIEEN ...cciitiiii ittt e e et e e e sbneeeean 55

9.2.5 APPlIcation CONIOl SCIEENciiiiiiiie ettt et e e s sbaeeeean 56

9.2.6 Create New DeVvelopment SCreeN...........cccvvviiiiii e 57

9.2.7 Copy to New Development SCreeNccvvvviiiiiiie e 57

9.2.8 EXPOort POP-UPp WINAOWccooiiiiiiieiec e 58

9.2.9 IMpOort POP-UP WINAOWcccoeiiiiiiiccccceee e 58

9.2.10 SBR DB Name Mapping SCrEENcccciiiiieieie ettt 60

9.2.11 Development ENVIFONMENLccooviiiiiiie e 61

LS I I =] (TSI T = o PSS 61

9.2.13 Provision TaBIES SCIEEMcoiiiiiiiiiiieiiie ettt e e r e e e e e e snanaeeeeeeeeeanes 64

LS TR TS 1@ B o =T o L PRSPPI 66

9.3.1 APPlication CONIOI SCIEENcii ittt ettt e e et e e e sbeeee e 67

9.3.2 EXPOrt POP-UP WINOOWceiiiiiiiieiiiiiee ittt ettt e et e e e snbae e e s snnneeeeaa 67

9.3.3 IMPOrt POP-UP WINAOWccoiiiiiiiiiiiiiei ettt et e e snaeee e 67

9.3.4 TADIES SCIEEN ...ttt et e e e e e s s bbb et e e e e e e s nbbbeeeeaeeeeaans 67

9.3.5 Provision TabIEeS SCrEEMcooi i 68

LS I 3 V] (=1 T @ 110 PP 69

10. Development ENVIroNmMeNnt OVEIVIEWccoviiiiiiiiiiiiiiiiiiiiiiieiieeeeee et 70

10.1 Development ENVIrONMENt MOOESuoiiiiiiiiiiiiiiieee ettt e e e e e s aeeeeae s 70
10.2 Layout 71

10.3 COUE TEXE EQILOF......eeiiieiiiiiiiieie ettt ettt e e e e e s bbbt e e e e e e e s anbe b e e e e e e e e e annbreeeeaaens 73

10.4 FIOW CONLIOI CRAI. ...ciiiiiiiiiiiei ettt ettt e e e e e e e bbb e et e e e e e e s anbbeeeeee e e e e annbreeaeaaens 73

10.4.1 SEArt SYMDOL ...t a e 74

10.4.2 Execution BIOCK SYMDOL........cooiiiiiiiiiiiie et 74

10.4.3 Asynchronous Call SYMBOIoiiiiiiiii e 74

DCA Programmer’s Guide, E89013 Revision 01, January 2018 5

CONFIDENTIAL — ORACLE RESTRICTED

12.
13.

10.4.4 Termination SYMDOIcooiiiiiiie e e e e e e e s et e e e e e e e s e nnreees 74
10.4.5 Delete symbol from the Flow Control Chartcccvvireeeiiiiiciecece e 74
10.4.6 Flow Control Chart Validation...........ceeieiiiiieiiieiee e 75
10.4.7 COMMANT OULPUL AFBAueeiiieiiiiie ettt ettt ettt e et e st e e s e et e e e e nbe e e e e neee 75
10.4.8 RENAET CRAIT ... tiiiieiiieii ettt et b e st e e e bb e e e e e nbe e e e anbe e e e eeees 75
F0.4.9 SAVE ...ttt et e e e et a e e s 76
10.4.10 ChECK SYNTAX ...ttiiieiiiiiieiiie ettt bbb e e 76
10.4.11 10701111 011 [S TP PUPPPPPPPPON 76

10.5 RACE CONAILIONS .cciitiieeiitiie ettt etttk e e ettt e e e aa bt e e e ea b et e e e as b et e e e anb et e e e anbe e e e e anbeeeeennes 76
N o SO UP PRSPPI 78
0 O 1= =t I SRR 78
11.1.1 API to Manipulate the Diameter HEQUErcoccuuiiiiiiiiieiiiiie e 78
11.1.2 API to Manipulate the Diameter AVPSuuuiuiuimiiiiiiiiieieieieieieieieeee ... 81
11.1.3 API to Manipulate the Diameter Grouped AVPSuuuiuiiiiiiiiiiinieiiieiinieieiernnn. 86

11.2 Diameter Transaction Stateful APISc.eviiiiiiiii e 87
11.2.1 INternal VariabIesooo it 87
11.2.2 Diameter Transaction Context Variablesccccoiiii e 88

11.3 Read DCA Configuration Datacccoeviiiiiiiiii e 88
114 ROULING AP ettt et e e e e a bt e e e e s bt e e ek bt e e e aab et e e e e nbr e e e e anbe e e e e et 89
11.5 DEDUGGING AP ..ottt ettt e bt e e e e a bt e e ek bt e e e e b e e e e e b e e e b e e e e 90
11.6 CUSIOM MEAL APttt e e e e e e e s s st e e e e s e s e e eeee s 91
11.6.1 Counter TEMPIAE AP ..o et 91
11.6.2 RALE TEMPIALEeeiiiiiiiie ettt e ettt e e bt e e e e b e e e e e nees 92
11.6.3 BASIC TEMPIALEceoiiiiiiieiiie et et eenbn e e 95
G Y 1T o A =T g o] = = 97

117 U-SBR AP 98
11.7.1 The Prototype of Queries and QUErY RESUILSuuvuiuiuimimiiiiiiinieinieininieieenrnennn. 99
11.7.1.1 Specifying the QUEIYccceeiiieriieieee ettt 99

11.7.1.2 Retrieving the QUery ReSUItccceiriiiiiiiiniieieieceeeeee e 100

11.7.2 The U-SBR API FUNCLONS........uuiiiiiiiiiiiiitiiie ettt e e 101

11.8 Pl INFOMMALION ...ttt ettt e e sttt e e e st et e e e snbb e e e e snbaeeeeanbneeaeans 104
11.8.1 Check for ConfIgUIed PNui i 104
11.8.2 Fethc the OFgINAtor PEETccoiiiiie ittt 104
INteraction WIth IDIH.......cooo 105
BEST PraCliCeSooiiiiiiiiiii 107
13.1 The Main Part Of the Perl SCrPLcuuiiiiii e 107
13.2 Perl GIobal VariabIes...........cooiiiiiii ettt 108

DCA Programmer’s Guide, E89013 Revision 01, January 2018 6

CONFIDENTIAL — ORACLE RESTRICTED

13.3 Returning Control from a Perl SUBIOULINEccevviiiiiic e 108
L1304 CAlIDACKSeeeeiieeeie ettt e e bt e e e bt e e e abaeeeearaeeaeans 109
13.5 Sending multiple U-SBR QUETIESuuiiiiiieeiiiiiiiiie et s st e e e e s s saee e e e e e s s st e e e e e e e e s s nnneeees 109
13.6 Accessing Lower Layer Data from Mediation............c.cooiiiiiiiiiiiiieeiiiee e 110
13.7 PerfOrmMance TUMING ...ccooiurieeiiiiie ettt ettt e et e e e st e e e sabe e e e e aabb e e e e aabe e e e e sabreeeeanbneeeeanbneeeeaas 110
List of Tables
Table 1: NO/SO GUI AIffErENCESveiiii ettt e e st e e e st e e e e snbbeeeesnbreeeeans 49
Table 2: NO GUI Tables and Configuration Data ACCESSIDIlItY..........ccciiiiiiiiiiieee e 62
Table 3: SO GUI Tables and Configuration Data ACCESSIDIlItYcccceciiiiiiiiiiiie e 68
TADIE 4: IDIH EVENTSiiiiiiiiee ittt ettt e e e e e sttt et e e e s e sttt e e e e e s s s nsbeeeeeeeeeaeansbeaneeeeeesaannsneenaeeens 105

List of Figures

Figure 1: DCA Activation- Deactivation LIfECYCIEuuuuiuiuiiiuiiiiiiiiieiiiiiiieieieieieierererererereee.. 12
Figure 2: DCA Fram@WOIK MEINUuuuuuuuuiuiiiuiuiuueruteunrernrninsersrerernrererererere....—.—.—.—.—.—.—.———.———————————————————. 13
FIQUIE 3: DCA MEASUIMEIMEINTS. ... uuuuuuuuuuturututuruturururererernrerererererererere—e—e—erarereretetarererererererersrnrssssnsnsnnsrnsnsnnnnns 13
L L0 UL S I T S S 13
FIGUIE 5. DICA IMENU ...ttt e et 4 e a kbt 4o sk bt o4 e m b bt e e e ek bt e e anb bt e e e e st e e e e ennbeeeeenneee 14
Figure 6: Create a New ApPlICAtiON VEISIONocuuiiiiiiiiie ettt 16
Figure 7: New Application Version Createdeueiiuiiieiiiiie ittt 16
Figure 8: Create @ NEeW DAtBDASEeiiiiiiiiieiieie ettt e s ebe e e e 17
Figure 9: ProvisSion Table BIACKLIST..........ciiiiiiieiiiie ettt sebe e e 18
Figure 10: Insert a New Data Row to the BlackList Tablecoccciiiiiiiiiiiiii e 18
Figure 11: ProviSion DCA DB TabIES......uuuuiuiuiiiiiiiiiiiiiiieieieieierereterernrererererereere—.———.—————————————————————————. 18
Figure 12: The Blacklist DCA Development ENVIFONMENTuuuuviiuiuieiiiiiiieieinininieierniernrnrnreinrnnn.. 19
L Lo UL (SR R = F= Vo S S A =T o 0T [S 19
Figure 14: Event Handler Subroutine Name Configurationccccccuuveviiuiiiiimimiiieiiieeieiennn. 20
Figure 15: Development ENVIrONMENt BULLONSuuuuiiiiiiiiiiiiiiiiiieieieieieisieiararersrererernrerernrsrsrnrnn.. 21
Figure 16: Trial MP ASSIGNIMENT.......ciiiiiiiieiiiiii ettt e s st e s ab b e e e e e bt e e e e snbeeeeenees 22
Figure 17: Transitions from Development to Production Statecccceiiiiieiiiiie e 23
Figure 18: Creating @ NEW DCA VEISIONuuuiiiiiiiiee ittt st e st e s st e e e snbe e e e e neee 24
Figure 19: Assignment of the Version t0 @ DA-MPoiiiiiiii e 25
Figure 20: SBR TOPOIOGY EXAMPIE....c. ittt ettt st e e e e e e nees 28
Figure 21: Servers CONFIQUIALIONciiuuiiiiiiiiie ettt st e et et e s s et e e e e nbee e e e nnees 29
Figure 22: Server Groups CONFIQUIALIONoiiiuiiiiieii ettt e e e e et e e e e e e e nrebeees 30
Figure 23: Places CoNfigUIAtiON.............uiiiiiiaiiiee ettt e et e e e e e e s bbb e e e e e e e e s nbeaeees 30

DCA Programmer’s Guide, E89013 Revision 01, January 2018 7

CONFIDENTIAL — ORACLE RESTRICTED

Figure 24:
Figure 25:
Figure 26:
Figure 27:
Figure 28:
Figure 29:
Figure 30:
Figure 31:
Figure 32:
Figure 33:
Figure 34:
Figure 35:
Figure 36:
Figure 37:
Figure 38:
Figure 39:
Figure 40:
Figure 41:
Figure 42:
Figure 43:
Figure 44:
Figure 45:
Figure 46:
Figure 47:
Figure 48:
Figure 49:
Figure 50:
Figure 51:
Figure 52:
Figure 53:
Figure 54:
Figure 55:
Figure 56:
Figure 57:
Figure 58:
Figure 59:
Figure 60:

VIBW PIACES ...ttt ettt ettt s e n e st sn e s n et nn e 31
Create PlaCe ASSOCIALION........ciuii ettt ettt sne e snr e re e s rn e e snne e e nne e e e 31
VIEW Place ASSOCIALION ...ttt ettt e e e sre e anee e 32
SBR Resource Domain CONfIQUIALIONcooiuiiiieiiiiiee ittt 32
DCA MP Resource Domain ConfigUIationcceooiiiiiieiiiiiee et 33
View Resource Domain CONfIQUIALIONuuiiiiiiiiieiiiee et 33
Create SBR DAADASEoiiiiiiiiieitie ettt 34
VIEW SBR DAADASEoeiiiiiiiiiiiiiii ettt ettt 35
COUNTULR CAll FIOWceiiiitiiii ettt ettt e e s e e ees 36
COUNLULR P COUE ...ttt s n e e e e 39
A Counter INCreMEeNt RACEooiiiiiiiii 41
FIOW CONEIOI CRAIT ... e e e s 42
SBR DB NamMe MapPingcccoeiiiiieieieee et 42
View SBR DB NaME MaPPINGuuvreeererereeeeueeueueesesusereneneeeseessrnesrsnsmsreesmemee———————————. 43
TestRate DIffErentiationooiiireiie e 45
THE RAIE DCA COUEeeiiiiiieiie ettt ettt st e sttt e s et e s abbe e e e anbe e e e e nnes 45
FIlter DCAIRALE KPISttt ettt e bt e e et e e e anbae e e e e 46
Display TESTRALE KPl.......ooiiiiiiiii ittt e et e e e aabae e e e e a7
Filter DCAIRALE MEASUIEIMENTSeiieiiiiiiee ittt ettt ettt e et e e et e e et e e e s snbeeeeanees 47
Display the TestRate MEASUIEMENTS.......ccciiiiiiiiiiiie ettt 48
TeStRAtE Al HISTOIY ...coi it e e e 48
NO SCIEENS ...t e e r e e s s s er e e e s s s ne s 50
N[@ @To] Yo U= Na T o TS Tod £=T=1 o 50
The CuStom MEAL VIEW SCIEENMciuieiiiiiitiie ittt ettt 51
The Counter Template Configuration SCIrEEN............uuuuviviieriiiiiiiieieieirieererrrrrrr ... 51
The Basic Template Configuration SCrEENuuuiriieriiiieiiiiieieirieieerieirerrrrerr ... 52
The Rate Template Configuration SCrEENcocuiiii i 53
The Event Template Configuration SCIrEEMNeiiiiiiiiiiiiie et 54
N (@R ET=T a1 =1 N @] o] i o] o I S P PO RPPTPPR 55
NO Trial MPS ASSIGNIMENT .. .eeiiiiiiiiee ittt ettt e e et e e e aabee e e e nene 55
N{@ 27N o] o] [fo=11To] o I 0] ¢ | {o] E PO RPR PSR 56
NO Create New DeVelOPMENE SCIEENcoiuiiiii ittt et 57
NO Copy t0 NEW DEVEIOPIMENT. ...ttt e e e e e e e e e e neebeees 57
[N (@ 2 = e T ¢ ST PP PP P PP PR PRPTPRPTPRPRPRPR 58
NO IMPOIt BUSINESS LOGICeteiiiiieeeiiite ettt ettt e e e e e e st e e e e e e e s nnneeees 59
NO Import ConfiguIration Dataocuuiiiiieieee e a e e e 59
NO SBR DB Name Mapping VIBWuueiiiiiiiiiiiieiie ettt e e e e e e s enaeeeees 60

DCA Programmer’s Guide, E89013 Revision 01, January 2018 8

CONFIDENTIAL — ORACLE RESTRICTED

Figure 61:
Figure 62:
Figure 63:
Figure 64:
Figure 65:
Figure 66:
Figure 67:
Figure 68:
Figure 69:
Figure 70:
Figure 71:
Figure 72:
Figure 73:
Figure 74:
Figure 75:
Figure 76:
Figure 77:
Figure 78:
Figure 79:

NO SBR DB Name Mapping INSEIM.........uuuiiiiiiiiiiiiiie e s s e s s s e e e e e e s s senane e e e e e e s nnnnneees 60
NO TADIES VIEW SCIEENeeiiiiiiiiie ittt ettt et e e sne e e snreeennne e 61
NO TabIES INSEIt SCIEENNcouviiiiiieiiee ettt e s e re e e sareeennee e 63
Provision Table BULION..........uiiiiiiiiiee ittt e e aab e e neee 64
NO Provision Table VIEW SCIEENcoouiiiiiiiiiee et 65
NO Provision Table INSEIrt SCIrEENuiii i 65
SO SCIBENS ...ttt ettt ettt e e ettt e e e et e e e s et e e ar e 66
SO APPLICAtION CONIOI SCIEENeiiiiiiii ettt e st e s e e ennneees 67
SO Tables VIEW SCreen (EMPLY) ..eooiveeeeeiiieieeiiiiee ettt ettt st e s e e e s nnneeeesnnnneees 68
System Options for the Unavailable Operation Statuscocccvviieiiee st 69
System Options for the Exhausted DRL RESOUICES..........cceeeiiiiiiiiiiiieeeeiiiiieie e e e e sesnvnane e e 69
System Options for the RUN-TIME ErTOr ..o, 70
System Options for the Realm and FQDN ..., 70
System Options for the Application INVOCatioNcccccveveieiiiiie 70
LAY OUL SETUCTUI. . ettt e e e e e et e e e e et e e et n s e e e e e e e ta b neeeaeeeesbaaneeeeeaeees 71
LAYOUL PN SCIEEIN .ottt e bt e e e snb e e e e nnbe e e e eeees 72
TOOIDOX BNA ACHIONS ...ttt ettt e st e e e b b e e s e nbe e e e eabeeeeennes 72
(700 [Il =L [(o] T PP PUPPPP 73
IDIH Event Trace of an U-SBR QUETYccoiiuiiiiiiiiiii ittt e e snnee e 107

DCA Programmer’s Guide, E89013 Revision 01, January 2018

CONFIDENTIAL — ORACLE RESTRICTED

1. Introduction

Diameter Custom Applications (DCA) is a framework that enables a significant reduction of the coding —
testing — deployment — maintenance cycle in the development of Diameter applications.

This document is intended for developers of DCAs. It describes how DCAs can be created, how their
business logic and configuration data can be provisioned, how their lifecycle from development to
production can be managed, and the various APIs available.

Following the DCA framework and DCA activation (Chapter 2), the document is organized around three
DCA examples: Blacklist (Chapter 3), CountULR (Chapter 6), and Rate (Chapter 8), which demonstrate
the basic features of the DCA framework. A number of additional chapters, interleaved with the chapters
describing the three DCAs provide a gradual insight into essential capabilities of the DCA framework, like
the DCA lifecycle management (Chapter 4), stateful DCA development mechanisms (Chapter 5), and
tools for monitoring the execution of DCA (Chapter 7).

Chapter 9 provides a complete GUI reference, with the Development Environment described in
Chapter 10.

The various APIs available are described in Chapter 11.
1.1 References

[1] CGBU_018429 - DCA Framework and Application Activation and Deactivation
[2] E58954-02, DSR Software Installation and Configuration Procedure

1.2 Glossary

This section lists terms and acronyms specific to this document.

Acronym Description

API Application Programming Interface

ART Application Routing Table

AVP Attribute Value Pair (in context of Diameter protocol)
ComAgent | Communication Agent

DA-MP Diameter Agent Message Processor

DAl DSR Application Infrastructure

DAL Diameter Application Layer

DBCA Database Change Agent

DCA Diameter Custom Applications (framework)

DRL Diameter Routing Layer

DSR Diameter Signaling Router

EDL Encode-Decode Library

I-SBR Independent SBR (Session Binding Repository)
JSON Java Script Object Notation

MEAL Measurement, Event and Alarm

MO Managed Object

NOAM Network Operations Administration and Maintenance

DCA Programmer’s Guide, E89013 Revision 01, January 2018 10

CONFIDENTIAL — ORACLE RESTRICTED

Acronym Description

OAM Operations, Administration & Maintenance

OID Object Identifier (SNMP)

Perl Practical Extraction and Reporting Language — a scripting language

PRT Peer Routing Table

SNMP Simple Network Management Protocol

SOAM Site Operations Administration and Maintenance

TTR Trace Transaction Record (in context of IDIH)

U-SBR Unive(;sal SBR (Session Binding Repository) — used by DCA to store generic application
state data

1.3 Terminology

Acronym Description

A-Level NOAM —level

Asynchronous | Symbol in the Development Environment that represents a code statement that calls an

Call Symbol asynchronous function provided by the DCA Perl API. The code statement occurs
within a preceding Execution Block. The symbol displays the name of an asynchronous
function that is invoked.

B-Level SOAM- level

DCE Web application where a custom Diameter application developer can edit, save, check

Development
Environment

syntax, compile the application code for a Diameter Custom Application, and generate
an Interactive Flow Control Chart from the application code.

Execution Symbol in the Development Environment that corresponds to an application subroutine
Block Symbol | where the name of the symbol is also the name of the subroutine.

Internal A storage mechanism that allows persistence during a Diameter transaction lifetime.
Variable

Start Symbol

Symbol in the Development Environment that marks the start of execution for the
application.

Termination
Symbol

Symbol in the Development Environment that represents the end of the application’s
execution.

1.4 WARNING on Copying and Pasting Code from this Guide

Please note that when copying and pasting code from Microsoft Word or other editors or document
viewers into the Development Environment editor, some characters (typically punctuation characters like

guotes) may e

nd up having non-ASCII character codes, which leads to compilation errors. For instance:

Checking syntax...

Unrecognized character \x<..> in column <..> at script file line <.>.

Check Syntax found errors. Correct the syntax errors and try again

The solution is to delete the copied and pasted punctuation character and re-type it in the Development
Environment editor.

DCA Programmer’s Guide, E89013 Revision 01, January 2018

11

CONFIDENTIAL — ORACLE RESTRICTED

2. DCA Activation and Deactivation

Activation and deactivation are standard procedures that enable the DSR applications in general and
DCA in particular to be installed and uninstalled on a network.

2.1 DCA Activation

To start developing a new DCA, perform the following two steps:

1. Activate the DCA framework on the NO. See Procedure 5 in [1] CGBU_018429 - DCA Framework
and Application Activation and Deactivation for the instructions.

This step needs to be performed only once for a given network.

2. Activate the new DCA on the NO. See Procedure 6 in [1] CGBU_018429 - DCA Framework and
Application Activation and Deactivation for the instructions.

Perform this step once per DCA (similar to native DSR applications). Note, however, that only a
limited number of DCAs (currently 5) can be simultaneously activated. Therefore, deactivate old
DCAs to make room for new DCAs.

Figure 1 provides an overview of the activation-deactivation lifecycle.

Activate DCA Activate DCA
Framework Application

: As many :
| instances of this |

! process as many |

I DCA apps l\\

: are activated in : ™

: the network : N

Activated, not yet
provisioned DCA App(no
versions, operational state
»Unavailable")

Create New /’/A
Wersion, Import

(Business Logic)

|
Create New Version, |
Copy From Existing |
Version, Import, |
|

|

|

|

Activated and
provisioned DCA
App (1+ versions in
»Development”,
#Trial”, ,Production”,
LArchived” states)

Export, Make Trial,
Make Production,
Make Development,
Delete

Deactivate DCA Deactivate DCA
Framework Application

== —————

Figure 1: DCA Activation- Deactivation Lifecycle

DCA Programmer’s Guide, E89013 Revision 01, January 2018

CONFIDENTIAL — ORACLE RESTRICTED

211 DCA Framework Activation

When the DCA framework is initialized, the DCA Framework folder with the Configuration file displays
in the left side menu (Figure 2).

B L Main Menu
E1 B Administration
£ M Configuration
g @ Alarms & Events
H i Security Log
-~
]

g1 s Communication Agent
H B Diameter Common

H | Diameter

B @ RADIUS

B &

- B Configuration

Figure 2: DCA Framework Menu

All measurements (Figure 3) and KPIs (Figure 4) associated with the DCA framework also display.

Main Menu: Measurements -> Report

Fiter = Info = Tasks -

Filter

TEIE I Network Element - |Z| I Server Group - |Z| Reset |
LB I DCA Framework Exception |Z| I - Interval — |Z| Reset |

- Group --

Column Filter: | ul I Reset
ComAgent Exception ==

ComaAgent Performance —
o016 |dan |01 | oo 00 Reset
DCA Framework Performance
il IDH
OAM.ALARM
OAM.SYSTEM

Time Range:

Server Exception

Figure 3. DCA Measurements

Main Menu: Status & Manage -> KPIs &

Tue May 03 06:37:40 2016 |
Filter ~ Tasks

Entire-Hetwork Gremlin-DAMP-1 Gremlin-DAMP-2 Gremlin-DAMP-3 Gremlin-DAMP-4 Gremlin-NO-A Gremlin-NO-B Gremlin-501-A Gremlin-S01-B Gremlin-502-A

ComAgent DCA Framework Server

Name Max Min Median Average Sum Description

Ingress Message Average Ingress Message Rate (messages per second) of Diameter messages
Rate WEy Loy LI WEy ey received by the DCA Application

Runtime Errors Rate 0.00 0.00 0.00 0.00 0.00 :z:zr;t‘;{umlme Error Rate (runtime errors per second during the Iast sampling
Completed 0.00 0.00 0.00 0.00 0.00 Diameter transactions that a DCA App successfully relays

Transactions

Transactions Discard 0.00 0.00 0.00 0.00 0.00 Allows the operator to determine how many transactions a DCA app relay terminates by
Request . . . discarding the request (by comparison with the Completed Transactions).

Figure 4: DCA KPIs

2.1.2 DCA Activation

When the new DCA is activated, the DCA subfolder with the name provided by the user during the
activation procedure becomes visible in the left side menu (Figure 5). The DCA subfolder includes the

DCA Programmer’s Guide, E89013 Revision 01, January 2018 13

CONFIDENTIAL — ORACLE RESTRICTED

screens for enabling the business logic and provisioning configuration data. DCA becomes visible across
DSR (ART, maintenance screen, etc.).

[=] ‘-3 DCAFramework
["i"‘] Configuration
=] ‘3 KKtestapp
(] Custom MEALs
[%| General Options
(] Trial MPs assignment
[Application Control
[’i"‘] Systermn Options
[+] (O] TestApp5

Figure 5: DCA Menu

2.1.3 Post-Activation DCA State

Following the activation procedure, DCA is in the disabled state. While in the disabled state, Diameter
traffic is not delivered to DCA. First, enable DCA from the SO Main Menu: Diameter > Maintenance >
Applications. Note that on this screen DCA is identified by the short name configured by the user during
the DCA activation procedure.

Independently from the enabled/disabled state of DCA, at this stage no version of DCA has been
provisioned yet. As a result, there is no version in Production and Trial state. As long as no Production
or Trial version is available for a DA-MP to run, the DCA operational status is Unavailable (see SO Main
Menu: Diameter > Maintenance > Applications).

The behavior of DCA while in the Unavailable operational state (provided DCA has been enabled) is
configurable from the SO Main Menu: DCA Framework > <DCA Name> > System Options (see
Section 9.4); possible options are dropping the Diameter request, forwarding the Diameter request, or
returning a Diameter answer with a configurable error code.

From this point on the user can provision the configuration and business logic for DCA.

2.2 DCA Deactivation

The deactivation procedures enable DCA and, respectively, the DCA framework to be removed from a
given network.

2.21 DCA De-Activation

The deactivation of DCA is not allowed as long as versions of the respective DCA are still in Production
and/or a Trial state (see Chapter 4).

Following deactivation, the DCA GUI folder under the DCA Framework menu item disappears. DCA is
deregistered from the ART; its KPIs and measurements do not display or report any longer.

2.2.2 DCA Framework De-Activation

DCA framework deactivation is not allowed as long as at least one DCA is activated in the network.

Following deactivation, the DCA framework GUI folder disappears from the left-hand GUI menu.

3. DCA Provisioning — The Blacklist DCA

This section provisions the configuration data and business logic for a simple DCA.

DCA Programmer’s Guide, E89013 Revision 01, January 2018 14

CONFIDENTIAL — ORACLE RESTRICTED

3.1 The Blacklist DCA

The Blacklist DCA checks the Origin-Host AVP of incoming Diameter requests and verifies whether it is
blacklisted or not. In case the Origin-Host is blacklisted, the Diameter request is dropped, otherwise, the
Diameter request is forwarded unchanged.

3.2 Prerequisites

The DCA framework must have been previously activated as described in [1] CGBU_018429 - DCA
Framework and Application Activation and Deactivation. Also, a DCA with the name Blacklist is activated
as described in [1] CGBU_018429 - DCA Framework and Application Activation and Deactivation.

The Blacklist DCA has to be enabled on all the DA-MPs in the network from the SO Main Menu:
Diameter > Maintenance > Applications.

An ART rule is added that enables Diameter messages to be delivered to the Blacklist DCA.

3.3 The Process

The following step must be followed to provision the Blacklist DCA:

Step 1. Configure the general options and behavior of the Blacklist DCA.

Step 2. Create a new development version of the Blacklist DCA.

Step 3: Define the structure of tables to store the Blacklist configuration data.

Step 4: Provision the Blacklist configuration data.

Step 5: Provision the Blacklist business logic — essentially a Perl script.

Step 6: Render the Flow Control Chart based on the Perl script. Save and perform syntax checks.
Step 7: Test the Blacklist DCA: configure the Trial DA-MPs and promote Blacklist to Trial state.

Step 8: Compile Blacklist, promote Blacklist to Production state.

3.3.1 Step 1: Configure DCA General Options and Behavior

At this stage, there is no version available for the Blacklist DCA. As a result, DCA is in the Unavailable
operational state. No traffic is forwarded to the Blacklist DCA and, for outside observers, DCA behaves
as specified in the SO Main Menu: DCA Framework > <DCA Name> > System Options, Application
unavailable configuration section (see also Section 9.4).

The Run-time error configuration section of the same screen defines the behavior of DCA in case a
runtime error occurs during the execution of the event handlers.

Finally, the DCA programmer must ensure the names specified on the NO Main Menu: DCA Framework
> <DCA Name> > General Options (see Section 9.2.3) for the Diameter request and answer event
handlers (Perl subroutines) are consistently used in the Perl script.

For Blacklist in particular, Perl Subroutine for Diameter Answer is left empty because there is no event
handler defined to process the Diameter answers.

3.3.2 Step 2: Create New Development Application Version

Go to the NO Main Menu: DCA Framework > <DCA Name> > Application Control and click Create
New Development (see Figure 6). The Create New Development screen displays. Specify a name for
the newly created Blacklist version and optionally provide comments (for example, author name, brief
description of the business logic, etc.). Figure 7 shows the newly created version.

DCA Programmer’s Guide, E89013 Revision 01, January 2018 15

CONFIDENTIAL — ORACLE RESTRICTED

Main Menu: DCA Framework -> Test DCA Application -> Application Control

‘Versiom Name Status Comiments Creation Tame Production Time Flowchart Checksum

Config Tables and Diat [SR DB MNal n = Import
Business Logic = A Lavel Config Data
Craate Mew Development

E| Export
Make Development Make Tria Make Production -
Figure 6: Create a New Application Version
Main Menu: DCA Framework -> Test DCA Application -> Application Control

Version Name Status Comments Creation Time Production Time Flowchart Checksum

gomeancncsance o

Development 2016-May-11 06:46:47 EDT

Schema Checksum

Schema Checksum

Config Tables and Data Development Environment SBR DB Name Mapping + Import
Business Logic ALevel Config Data
Create New Development Copy to New Development s
| Export
Delete Business Logic ALevel Config Data

Make Development Make Trial Make Production v

Figure 7: New Application Version Created

DCA Programmer’s Guide, E89013 Revision 01, January 2018

16

CONFIDENTIAL — ORACLE RESTRICTED

3.3.3

Step 3: Define the Configuration Data Structure

Select the newly created development application version on the Application Control screen and click
Config Tables and Data. The Tables screen (Figure 8) displays. Click Insert on the Tables screen and
create a new configuration table for provisioning the blacklist. The Blacklist DCA configuration table
contains only one field: OriginHost, which is of type Diameterldentity, see Figure 8).

Main Menu: DCA Framework -> Test DCA Application -> Application Control -> Blacklist -> Tables -> [Insert]

Adding a new table

Field

Table Name
Description
Single Row

Level
Table Fields *

Field Name
Description

Unique

Mandatory

Data Type

Default Value

Note:

Vailue

BlackList Y

oNO
SO

[originHost .

Diameteridentity ~ *

Description

Unique name of the Table.

[Default = n/a; Range = A 32-character string
Valid are and

Must contain at least one alpha and must not start with a digit]

Optional Description.
[Default = n/a. Range = A 255 charadter string)

indicates If the table must have one single row.
[Default=Unchecked Range= Checked, Unchecked]

Configuration level of the table (NO or SO)
[Detauit=NO. Range=NO, SO}

Unique name of the Table Field

[Default = nfa; Range = A 32-character string. Valid are and

Must contain at least one alpha and must not start with a digit]
Optional description.
[Default = n/a. Range = A 255 character string)
Indicates If the table field must be unique.
[Default=Unchecked Range=Checked, Unchecked]
Indicates if the table field must be mandatory.
[Oefaut=Unchecked. Range=Checked, Unchecked]
Data Type
[Default=n/a. Range= Integer, Float, UTF8String.OctetString, IP Address, DiameterURI, Diameteridentity, Enumerated. Boolean)
« Integer. Unsigned64/Signedt4
« Float [++number numberfe/Ef+/-Inumber], for example 12.3 or 1.23e+1
« UTF8String
« OctetString: hexadecimal value prefixed with Ox
« IP Address: IPv4 (decimal numbers separated by a perlod) APvS (RFC4291, section 2.2; form 1 and 2 are supported)
« DiameterURL "aaa.” FQDN [port] [transport] | protocol J"aaas " FQDN [port] [transport | [protocol |, see RFC6733
« Diameteridentity: FQDN or Realm,see RFC5733

« Enumerated: Comma separated list of values, which can be separate items (a,b.c) o in form of : (a:1,0:2.¢3).
« Boolean: truefaise

Default Value.
[Defauit=n/a. Range= FODN or Realm,see RFC6733]

Ok | | Apply | | Cancel

Figure 8: Create a New Database

In this example, the configuration table is defined at the NO level. That means the configuration
table is replicated to all the DA-MPs in the network.

Alternatively, a configuration table may be defined at the SO level. That means, while its
structure is defined across the entire NO, its content is replicated only to the DA-MPs in each
individual SO. In this way distinct SOs may use different configuration data (see Section 9.3.5).

DCA Programmer’s Guide, E89013 Revision 01, January 2018

17

CONFIDENTIAL — ORACLE RESTRICTED

3.3.4 Step 4: Provision the Configuration Data

Once the structure of the Blacklist table is defined, the table displays on the Tables screen. Select it and
click Provision Table. The Provision Table View screen displays (Figure 9). Click Insert on the
Provision Table View screen and insert all the Blacklisted Origin-Hosts to the table one by one

(Figure 10).

Main Menu: DCA Framework -> DCA Test Application -> Application Control -> BlackList ->Provision Table

Table: BlackList

OriginHost

Edit | Delete Delete All Back

Figure 9: Provision Table BlackList

Main Menu: DCA Framework -> DCA Test Application -> Application Control -> BlackList -> Provision Table ->[Insert]

Adding a new entry
Table: BlackList

Field Value Description

OriginHost

Ok Apply Cancel

Figure 10: Insert a New Data Row to the BlackList Table

Main Menu: DCA Framework -> DCA Test Application -> Application Control -> BlackList -> Provision Table

Table: BlackList

OriginHost

mme.test.com
mme2.test.com
mme3.test.com
mmed4 test.com

mmeb5.test.com
Insert | Edit Delete Delete All Back

Figure 11: Provision DCA DB Tables

DCA Programmer’s Guide, E89013 Revision 01, January 2018 18

CONFIDENTIAL — ORACLE RESTRICTED

3.3.5 Step 5: Provision the Business Logic

Go back to the Application Control screen, select the application version, and click Development
Environment.

In the development environment, you can edit, save, check syntax, and compile DCA Perl code, which

defines the business logic DCA implements. An interactive Flow Control Chart is also rendered based on

DCA Perl script. The Flow Control Chart provides an overview of the control flow within DCA and is

useful in following the asynchronous calls and indicating the terminating actions (forward, drop, or return

answer). See Chapter 10 for more details on Development Environment.

The development environment of the Blacklist DCA is illustrated in Figure 12.

OF\)ACLG DCA Development Environment [DCA Test Application, BlackList]

100%
| > A v a q ’ File ~ Edt v~ ExecBlocks ~ Fit Resize

Start request Eub process request {

e r::Param::
il
my $originfost = dismer a5

die "Missing Origin-Hos £
if (isBlacklisted (SoriginHost)) {
dea::action()::drep();

ned ($diameserMsg);
Value ($msg, "Origin-Host");
originHost) ;

| Q

process_request

isBlacklisted {

my soriginHest = shift;

my $blacklist = $dea::appConfig{"Blacklist"};

my $i = 0;
ile ($i <= $#{$blacklist})

@

ity

isBlacklisted drop

—
I—_ sitt;
—

<

return 1 if $blacklist->[$i]{"OriginHost"} eq $originHost;
o)
retura 0;

1
Start answer

>

Figure 12: The Blacklist DCA Development Environment

First, the DCA programmer has to write in the right-hand panel the Perl code illustrated Figure 13. The

left-hand panel containing the flowchart is empty until the flowchart is rendered in Step 6.

sub process request {
my S$param = shift;
my Smsg = diameter::Param::message (Sparam) ;
die "Missing Diameter message" unless defined ($msg);

my $originHost = diameter::Message::getAvpValue (Smsg, "Origin-Host");

die "Missing Origin-Host" unless defined($originHost);
if (isBlacklisted ($originHost)) {
dca::action::drop();
} else {
dca::action::forward () ;
}
}
sub isBlacklisted {
my SoriginHost = shift;
my S$blacklist = $dca::appConfig{"BlackList"};
my $i = 0;
while ($1 <= $#{$blacklist}) {
return 1 if S$blacklist->[$i]{"OriginHost"} eq SoriginHost;
Si++;
}

return 0;

Figure 13: Blacklist Perl Code

The Perl script (see Figure 13) makes use of the getAvpVvalue function to read the value of an AVP.

Version stamw

The getAvpValue function is part of the EDL API, which is described in Section 11.1.2. It also uses the

DCA Programmer’s Guide, E89013 Revision 01, January 2018

19

CONFIDENTIAL — ORACLE RESTRICTED

drop and forward functions to discard and respectively forward the Diameter request. The drop
function is part of the basic routing API, which is described in Section 11.4.

3.3.5.1 Where is the Perl Script Being Executed?

Although the Perl script is edited using the NO GUI, the Perl script is replicated to and eventually
executed on the DA-MPs. In other words, there is no possibility of making the Perl script process traffic
other than running it on the DA-MPs.

3.3.5.2 How Do the Event Handlers Get Invoked?

The business logic of DCA consists of a collection of event handlers, which are invoked when a Diameter
message is delivered to the respective DCA. DCA may, therefore, define one event handler for Diameter
requests and one event handler for Diameter answers. Subsequent sections introduce another category
of event handlers, related to asynchronous database queries, but let’s stick to the Blacklist DCA for now.
Blacklist defines only one event handler: process request. Unlike isBlacklisted, whichis a
standard Perl subroutine invoked from process request, process_request itself is not explicitly
invoked from anywhere in the Perl script. The event handlers are explicitly invoked by the Perl running
environment of the DCA framework. Their names are configured in the NO Main Menu: DCA
Framework > <Application Name> > General Options screen and by default these names are
process_request and process_answer. These names may be changed, but one needs to make
sure that the configured event handler names are consistent with the names used in the Perl script. Also,
the event handler names are left empty if there is no corresponding event handler defined in the Perl
script (see Figure 14).

Main Menu: DCA Framework ->Test DCA Application -> General Options

DCA Application General Options

Field Value Description

The name ofthe Perl subroutine to be invoked when a Diameter request is received.
Perl Subroutine for Diameter Reguest process_request & [Default = process_request. Range = A 255 character string
Valid characters are alphanumeric and underscore. Must contain at least one alpha and must not start with a digit]

The name of the Perl subroutine to be invoked when a Diameter answer is received
Perl Subroutine for Diameter Answer [Default = process_answer. Range = A 255 character string
Valid characters are alphanumeric and underscore. Must contain at least one alpha and must not start with a digit]

The TTL ofthe application state data stored in the U-SBR by the DCA App, in seconds.

SEERTL 120 [Defautt = 120]

|App\y| ‘ Cancel |

Figure 14: Event Handler Subroutine Name Configuration

3.3.5.3 How Does DCA Configuration Data Get Accessed?

The configuration data of DCA are accessible to the Perl script through the $dca: :appConfig variable,
which is a complex variable representing a hash of arrays of hashes. One has to dereference it with
exactly the same table names and field names specified when the structure of the configuration tables
has been defined in step 3.3.3:

$dca::appConfig{“<table name>"}->[<record number>]{“<field name>"}
in our case:

$dca::appConfig{“BlackList”}->[<record number>]{“OriginHost”}

3.3.5.4 What is the Main Part Good For?

Blacklist has an empty Main Part. The Main Part of a Perl script is where the Perl interpreter starts
executing instructions. In DCA, the main part is executed only once following the successfully
compilation of the script.

DCA Programmer’s Guide, E89013 Revision 01, January 2018 20

CONFIDENTIAL — ORACLE RESTRICTED

The Main Part is typically used to perform whatever initializations are necessary (like for instance Custom
MEAL objects, as we describe later on).

Another task that fits into the Main Part is DCA configuration data post-processing. We have seen in
Section 3.3.5.3 that the Blacklist configuration data is accessible to the business logic (Perl script) as an
array. Blacklist simply loops through the array when looking for each Origin-Host, but a more
performance—aware version would certainly convert the array into a more performant data structure, like
for instance a hash table keyed by the Origin-Host values.

Other DCAs may even need to use multiple keys (hence multiple hash tables) or compound keys; the
Main Part is the right place to perform this kind of structural optimizations on DCA configuration data.

3.3.6 Step 6: Render Flow Control Chart, Save Script, Check Syntax

After editing the script, while in the Development state, the following actions are possible (see Figure 15):

¢ Render Chart (to generate the flowchart from the Perl code);
e Save (to save the Perl code and the flowchart);
e Check Syntax (to check syntax of Perl script).

= ¢ s alv @ g 1M0%

—
=

O

Render Chart
/j Render Code

| Save
I T ___.--""- .)l W M= = =W N =T o
_| Check Syntax
= . ""E-I=
_— 5; Compile
J— isBlacklisted

I= C

Figure 15: Development Environment Buttons

The Render Chart action generates a flowchart based on the Perl code. Note that the flowchart has a
Perl subroutine granularity and not a Perl instruction granularity. The flowchart's main purposes are: (i) to
describe how the callback subroutines are linked to the event handlers (Diameter message handlers or
other callback subroutines) that registers them and (ii) to indicate the terminating actions (drop, forward or
return answer).

The flowchart does not illustrate on which condition a Perl subroutine is invoked (for example, if
conditions) or how many times a Perl subroutine is invoked (for example, loop conditions). Also, the

DCA Programmer’s Guide, E89013 Revision 01, January 2018 21

CONFIDENTIAL — ORACLE RESTRICTED

Render Chart action is explicitly triggered by clicking the corresponding button after each modification of
the Perl script.

Save allows the flowchart and Perl code to be saved, while the DCA version is in Development or Trial
state.

Check Syntax becomes enabled once the Save action has been completed, while the DCA version is in
Development or Trial state. It performs a syntax check on the Perl code and displays the errors if the
syntax check fails.

3.3.7 Step 7: Test the DCA Version

Having the configuration data and business logic provisioned, it is now time to test the Blacklist DCA.

The DCA version is tested by promoting it to the Trial state, which automatically results in running it on
the dedicated Trial DA-MPs.

The first step is, therefore, to configure the Trial DA-MPs, which can be done from the Trial MPs
Assignment screen (see Figure 16 and Section 9.2.4).

The Trial DA-MPs assignment is configured per DCA, that is, it needs not be repeated for each DCA
version.

Note also that our network contains only one DA-MP, which is also a Trial DA-MP. However, in a real life
deployment, there would typically be a few Trial DA-MPs and a nhumber of non-Trial DA-MPs.

Main Menu: DCA Framework -> Test DCA Application -> Trial MPs assignment

Trial MP assignment

=5

RDUD3-MP1

<<

|ﬁ||(:ancel‘
Figure 16: Trial MP Assignment

Next, on the Application Control screen, promote the DCA version from Development to Trial state by
selecting it and clicking Make Trial.

While in Trial state, the DCA version can be: modified, saved, have the syntax checked and, in addition to
the Development state, it can also be compiled (by clicking Compile, see Figure 15), as further described
in Chapter 4. During each new cycle starting with the first Perl code modification and lasting until the next
successful compilation (with an arbitrarily number of modifications, save and syntax check actions taking
place during this time), the Trial DA-MPs execute the previously successfully compiled Perl script of the
respective DCA version.

If successfully compiled, the Blacklist DCA on the Trial DA-MP switches into the operational state
Available (see the SO Main Menu: Diameter > Maintenance > Applications screen). On the non-Trial
DA-MPs, the DCA operational state remains Unavailable because there is no DCA version in Production
state at this moment.

3.3.8 Step 8: Promote the DCA Version to Production State

A successfully compiled Trial DCA version can be promoted to the Production state. For this purpose, on
the Application Control screen, select the DCA version and click Make Production.

DCA Programmer’s Guide, E89013 Revision 01, January 2018 22

CONFIDENTIAL — ORACLE RESTRICTED

At this stage the only DCA version available so far is in Production state. All non-Trial DA-MPs start
running it and on these DA-MPs, the DCA operational state becomes Available. Because there is no
DCA version in the Trial state, the Trial DA-MPs run the Production version as well.

Please note that our network is a very particular case that contains one single DA-MP, which is
configured as a Trial DA-MP. This means that the Production version is executed on only this DA-MP if
and only if no Trial version exists. As soon as a (new) Development version is promoted to the Trial state,
the Trial DA-MP stops executing the Production version and starts executing the (new) Trial version.

While in Production state, the business logic of the DCA version cannot be changed anymore. It is only
the configuration data that can be updated.

We have achieved our initial objective of running the Blacklist DCA in our network. From this point on a
number of alternatives are possible:

e Demote the DCA version from Production state back to Development to fix bugs, re- test and promote
back to Production state.

e Copy the DCA version into a new version with the purpose to improve its business logic (in terms of
efficiency, functionality, or both) and eventually promote the newer version to Production state.

e Export the DCA version from the current network and import it onto another network.

We are touching on the DCA lifecycle management topic, which is described in more detail in the next
chapter.

4. DCA Lifecycle

The DCA lifecycle enables the DCA programmer to manage the lifecycle of a DCA.

So far we have developed one single DCA version, and we tested it and promoted it to the Production
state. The state transitions are illustrated in Figure 17.

1.

2.
Import Flowchart/Script Edit: Flowchart/Script,
& Config Schema, Config Schema,
Create New Version Config Data

Import: Config Data

Archived Development >/

3.
Promote to Trial

4.

6. Edit: Flowchart/Script,
Edit/Import Config Schema,
Config Data Config Data

Y Import: Config Data
Production - Trial >/

5Sb.
Promote to Production

Figure 17: Transitions from Development to Production State

DCA Programmer’s Guide, E89013 Revision 01, January 2018 23

CONFIDENTIAL — ORACLE RESTRICTED

In a real life deployment, DCA may need to be continuously enhanced both in terms of efficiency as well
as features. A typical approach would be to clone the DCA version currently in Production state to a new
version in Development state, work on the new version (while the old version is processing the Diameter
traffic), test the new version and eventually replace the older version in Production state with the newer
one. This process is illustrated by the transition path 7 > 3 > 5b > 9 in Figure 18.

Archived
Development

9.
Current
Production
version is
automatically
Archived when a
new version is
promoted to
Production.
An info message
will be displayed

7.

Copy to a New
Development
Version

3.
Promote to Trial
t— | If aTrial version already exists, an
error message will be displayed.
The user has to pull back the
existing Trial version to
Development state, before another
Development version can be
promoted to Trial

L\,

Production < Trial

Sb.
Promote to Production

Figure 18: Creating a New DCA Version

The DCA lifecycle management is done by navigating to the Main Menu: DCA Framework > <DCA
Name> > Application Control screen.

Each DCA version can be in one of the following states:

Development (initial state)

e There are zero or more Development versions in the system.

o Development version is not executed on any MP.

e Configuration schema (databases), configuration data, flowchart may be updated.
e A new version in Development state is created in the system when:

e Create New Development is clicked, see Section 9.2.5. In this case, the version has an
empty flowchart, empty configuration schema, and empty configuration data.

e Importing the business logic (with or without configuration data), see Section 9.2.9. In this
case the flowchart and the configuration schema (databases) is copied from the imported
version. Optionally, configuration data may be imported along with the business logic as well.

e Copying a new Development version from an existing version in the system, see
Section 9.2.7. In this case, the business logic and the configuration data of the selected
version are copied into the new version.

Trial

e There are zero or one Trial versions in the system.

e Trial version is executed on the DA-MPs assigned to run the Trial version

e If no Trial version exists, then the Trial MPs runs the Production version (see Figure 19).
e Configuration schema (databases), configuration data, flowchart may be updated.
Production

e There is zero or one Production version in the system.

e When no Production version exists in the system, the operational state of DCA on MPs running
the Production version is set to Unavailable (Main Menu: Diameter > Maintenance >

DCA Programmer’s Guide, E89013 Revision 01, January 2018 24

CONFIDENTIAL — ORACLE RESTRICTED

Applications). This may happen if the Production version is rolled back to the Development
state or deleted.

e Is executed:
e On all the DA-MPs, if no Trial version exists, or
¢ On all the DA-MPs except the DA-MPs assigned to run the Trial version, if a Trial version
exists (see Figure 19).
e Configuration schema (databases) & Flowchart are read-only.
e Configuration data may be updated.
e Archived
e There are zero or more Archived versions in the system.

e Archived versions are the application versions that have previously been in the Production state.
They serve as backups for bringing the system back to a previous known state with minimum
service interruption.

e Archived version is not executed on any MP.

e Configuration schema (databases), Configuration Data and Flowchart are read-only, but can be
exported and copied into a new version.

MP decides which
version to run

Trial

Version Exists
?

A J

<Run Trial version>

Prod

Version Exists
?

Y

Run Production
version

Operational state is
,unavailable”

Figure 19: Assignment of the Version to a DA-MP
The following transitions are possible for a given DCA version:

e Development > Trial (only if syntax was successfully checked and no other version is in Trial state)

e Trial > Production (only if the code/flow control chart was successfully compiled and no other version
is in Production state)

e Production > Archived (automatic transition when a new version is promoted to Production)

DCA Programmer’s Guide, E89013 Revision 01, January 2018 25

CONFIDENTIAL — ORACLE RESTRICTED

e Trial > Development

e Production > Development (DCA operational state becomes Unavailable)
e Archived > Development

e Archived > Trial

e Archived > Production

5. Developing Stateful DCA

The Blacklist DCA introduced in Chapter 3 was a stateless Diameter application because it was
processing each Diameter message individually without maintaining any state between a Diameter
request and its corresponding answer (Diameter transaction state) or across Diameter transactions (for
example, Diameter session state) or across Diameter sessions (for example, user state).

DCA may need to store state:

1. Diameter transaction state — for instance collect some information from the Diameter request and use
that information when processing the Diameter answer.

This task can be addressed in two ways:
a. Using the Diameter transaction context variables APl documented in Section 11.2.2.

b. Developers familiar with the Internal Variables from the Mediation feature may use Internal
Variables for this purpose, as described in Section 11.2.1. However, Internal Variables involve a
configuration overhead and therefore unless there is a strong argument in favor of using them (for
example, they need to be set or read from Mediation rules) the Diameter transaction context
variables, being a purely programming interface, are preferable

2. Diameter session or user state — for instance collect information across multiple Diameter
transactions in the same session or user information across multiple Diameter sessions.

This task can be addressed using the Universal Session Binding Repository (U-SBR) and is
described in Section 11.7.

6. A Stateful DCA Using the U-SBR Infrastructure

In Chapter 3 we developed a stateless DCA. Chapter 5 introduces the mechanisms available in DCA to
develop stateful DCA.

This chapter describes the additional configuration steps to perform, and introduces the API available to
develop a stateful DCA that uses the U-SBR (Universal Session Binding Repository). The U-SBR
provides a generic interface to the I-SBR (Independent Session Binding Repository), which implements a
scalable, distributed, and persistent database infrastructure, which DCA and other Oracle applications
may use.

6.1 The CountULR DCA

The CountULR DCA maintains a per-user count of ULR messages and deletes it when a CLR message
from the respective user is received. The user is identified based on the content of the User-Name AVP
in the incoming Diameter requests.

6.2 Prerequisites

The DCA framework must have been previously activated as described in [1] CGBU_018429 - DCA
Framework and Application Activation and Deactivation. Also, a DCA with the name CountULR is
activated as described in [1] CGBU_018429 - DCA Framework and Application Activation and
Deactivation.

DCA Programmer’s Guide, E89013 Revision 01, January 2018 26

CONFIDENTIAL — ORACLE RESTRICTED

The CountULR DCA has to be enabled on all the DA-MPs in the network from the SO Main Menu:
Diameter > Maintenance > Applications.

An ART rule is added that enables ULR and CLR Diameter requests to be delivered to the CountULR
DCA.

6.3 The Process

The following steps must be followed to provision the CountULR DCA:

Business Logic and Configuration Data Provisioning U-SBR DB Configuration

Step 1. Configure the general options and behavior of the Step A: Configure one or more
CountULR DCA. U-SBR DBs (as required by DCA
Step 2: Create a new development version of the CountULR DCA. business logic).

Step 3: Define the structure of tables to store the CountULR Step B: Configure a logical-to-
configuration data. physical U-SBR DB mapping

Step 4: Provision the CountULR configuration data.

Step 5: Provision the CountULR business logic — essentially a Perl
script.

Step 6: Render the Flow Control Chart based on the Perl script.
Save and perform syntax checks.

Step 7: Test the CountULR DCA: configure the Trial DA-MPs and promote CountULR to Trial state.
Step 8: Compile CountULR, promote CountULR to Production state.

Steps 1 to 8 are similar to those described in Chapter 3.

Steps A and B are required to create an U-SBR DB and allow the CountULR DCA to interact with it.
U-SBR DB configuration is independent from DCA configuration, except that a relative ordering must be
followed:

e Step A may be executed in any order relative to steps 1 and 2.

e Step B must follow step 2 because a logical-to-physical mapping is always associated with a DCA
version.

e Step B may be executed in any order relative to steps 3 to 6;
e Step 7 must follow step B.
A valid execution sequence is steps 1,2>A>3,4,5,6>B>7, 8.

6.3.1 Step 1: Configure DCA Global Options and Behavior

In addition to the considerations discussed in Section 3.3.1, for DCAs that use U-SBR, the following
configuration options may need to be adjusted:

e Onthe NO Main Menu: DCA Framework > <DCA Name> > General Options (see Section 9.2.3):

e Application State Data TTL, which defines the time interval after which the state data is
considered expired and is deleted by the U-SBR audit mechanism. The lifetime of the state data
is initialized to TTL when created and is then automatically extended with the TTL value each
time the state data is updated. The lifetime of the state data depends on the business logic that
DCA implements and as a rule of thumb, it is twice the expected validity period of the state data
stored. For instance, if DCA is supposed to reject, under some specific circumstances, an user's
Diameter requests for a certain time interval, then the double of this time interval would be a good
value for the state data lifetime

e Read-Only U-SBR Access as Guest, which may be used to control the access of DCA to U-SBR
DBs owned by other DCAs. This option is not relevant to CountULR because CountULR
exclusively uses the U-SBR DB owned by itself (see Section 6.3.3.5)

DCA Programmer’s Guide, E89013 Revision 01, January 2018 27

CONFIDENTIAL — ORACLE RESTRICTED

e |tis recommended the state data size (consisting of the size of the lookup key and respectively the
size of the state data itself) of any new DCA is kept below the default values configured on the NO
Main Menu: DCA Framework > Configuration screen (see Section 9.2.1). If, for good reasons,
DCA requires a larger lookup key or more data to store, then these limits are increased.

e Note that these limits apply globally to all active DCAs. As a result, decreasing these value may
result in existing DCAs having their U-SBR queries rejected with a
dca::sbr::ResultCode: :MaxStateSize error, and is, therefore, not recommended.

6.3.2 Step 2: Create a New Development Version

See Section 3.3.2.

6.3.3 Step A: Configure the U-SBR DBs

Configuring a U-SBR DB must be preceded by configuring the underlying I1-SBR topology:

e Configure the I-SBR topology

e Step A.1l: Servers Configuration

e Step A.2: Server Groups Configuration

e Step A.3: Places Configuration

e Step A.4: Place Associations Configuration

e Step A.5: Resource Domains Configuration
¢ Configure the U-SBR DB

e Step A.6: U-SBR Database Configuration

The configuration of the I-SBR topology and SBR Databases is also described in more detail in [2]
E58954-02, DSR Software Installation and Configuration Procedure.

(SBRRD1 (Resource Domain) DCAPA1

(Place Association)

SBRSG 1 (Server Group)

DCASBR1

Site 1
(Place)

prmmme e ————
L ————

(DCARD1 (Resource Domain)

MPSG [Server Group)
DCAMP1

\. J
- J

Figure 20: SBR Topology Example
The CountULR DCA uses a simple I-SBR topology, illustrated in Figure 20.

The topology consists of a DA-MP (DCAMP1), which processes the Diameter messages; a SBR-MP
(DCASBR1), which stores the U-SBR DB (USBRDB1); and a NO and a SO.

DCA Programmer’s Guide, E89013 Revision 01, January 2018

CONFIDENTIAL — ORACLE RESTRICTED

Next, we have:

e One server per each server group (DCAMP1 in MPSG and DCASBRL1 in SBRSG1)

e One server group per resource domain (MPSG in DCARD1 and SBRSG1 in SBRRD1)
e Both resource domains are in the same place (Sitel)

e The Place Association (DCAPAL1) includes just one Place (Sitel)

6.3.3.1 Step A.1: Servers Configuration

Servers are the processing units of the application with various roles within the application: Network
OAM&P (NOAMP), System OAM (SOAM), and MP. For our case, we would need to configure two MPs —
one for the DA-MP that processes the Diameter messages and one for the SBR-MP.

On the Servers screen, configure the SBR MP DCASBR1 with the MP Role and the DA-MP DCAMP1,
see Figure 21.

=1 & Main Menu .)
= J@D Aistation Main Menu: Configuration -> Servers
i
Fri May 20 0751101
[3 Configuration
[(1 Networking
[) servers Hostname Role System ID Server Group Network Element Location Place Details
D Server Groups INTERNALXMI: 10.240.90.238
7] Resource Domains DCANO Network OAM&P DCANO NOSG NO Site1 ITERNALI, 166 268
[Places
INTERNALXMI: 10.240.90.242
7] Place Assaciations DCASD System OAM DCASO 505G SOAI Site1 e
% 1 DSCP
Siﬁarms & Events INTERNALXMI: 10.240.90.191
A= DCAWPY P WPSG S0AN Site INTERNALINI; 169.254.5.49
[+] (1 Security Log HMore
[+ (] Status & Manage
INTERNALXML 10.240.90.245
) O] Measursments DCASER1 P SBRSG1 S0AN Site L i s
[(2 Communication Agent
) Diameter Commen DCASER2 P SOAM Site INTERNALXML: 10.240.90 244
&] INTERNALIMI: 169 254.5 32
[(] Diameter
INTERNALXMI: 10.240.90.243
L O RADIUS DCASER3 P SOAN Site TR
[+ 7 SBR
[+ () DCA Framework
@ Help
[Legal Notices
[Logout
Insert Report

Figure 21: Servers Configuration

6.3.3.2 Step A.2: Server Group Configuration

The Server Groups allow the user to assign a function (DSR, SBR, etc.), parent relationships, and levels
to a group of servers that share the same role, such as NOAMP, SOAM, and MP servers.

On the Server Group screen, configure the new SBR Server Group SBRSG1 that includes the DCASBR1
server and has SBR function, see Figure 22. Assign the Parent Relationship and Level C to a group of
servers that share the SBR Role. Configure the DA-MP MPSG Server Group that includes DCAMP1
server and has the function of DSR.

DCA Programmer’s Guide, E89013 Revision 01, January 2018 29

CONFIDENTIAL — ORACLE RESTRICTED

[/2 Main Menu
[+ (] Administration
[=] -3 Configuration __F\Iler' -
[+ 2] Networking
[semvers Server Group Name Level Parent Function Connection Count Servers
[server Groups
[Resource Domains

Main Menu: Configuration -> Server Groups

Network Element. SOAM NE HA Pref. DEFAULT
DSR (multi-active

[Places WPSG c 5086 cluster) 1 Server Node HA Pref VIPs
[} Piace Associations DCAMP1
[2] DSCP
[[Alarms & Events Ty Metwork Element. NO NE HA Pref. DEFAULT
[[Security Log NOSG A NONE pair) 1 Server Node HA Pref ViIPs
DCAND

[£ Status & Manage
[3 Measurements
[1 Communication Agent

MNetwork Element: SOAM NE HA Pref. DEFAULT

[+ 2] Diameter Comman SBRSG1 c 5086 SBR 1 Server Node HA Pref VIPs
f DCASBR1

[+] [Diameter

&l CIRADIUS SBRSG2 c 508G SBR 1

= C1SBR

(= (21 DCAFramework Network Element SOAM NE HA Pref. DEFAULT
@ Help 8086 B NOSG DD:S (acthveistandby Server Node HA Pref VIPs
[0 Legal Notices DCASO
(@ Logout

Insert Report

Figure 22: Server Groups Configuration

6.3.3.3 Step A.3: Places Configuration

The Places allow building associations for groups of servers at a single geographic location. These
places can then be grouped into place associations, which create relationships between one or more
place.

On the Places screen configure a new place Sitel. Set a unigue instance name, a Place Type Site, and
a group of server members belonging to the site. For our example, all available servers are in the same
place, see Figure 23 and Figure 24.

A Place Type is always Site.

g Main M - - - -
=1) Wain Wenu Main Menu: Configuration -> Places [Edit]

& @ comarston N p—
B anfiguration
[3] (2] Netwarking
[servers
[1] Server Groups
[Resource Domains

Editing Place Site1

[Places lace)
[Place Associations Field Value Description
[(3 D3CP

[3] (] Alarms & Events Place Name* Site1 Unique identifier used to label a Place. [Default = n/a. Range = A 1-32-character string. Valid characters are alphanumeric, underscore, dash, and space] [Avalue is required]
[+l (0] Security Log

[[Status & Manage

[(] Measurements Parent NONE The Parent of this Place [Avalue is required]

[3 (] Communication Agent E
[(2] Diameter Common

[O] Diameter M Place Type* Site The Type of this Place [Avalue is required]
[] RADIUS

g SBR

Ba Servers

=) £3 Configuration
[7] SBR Databases

[S8R Datavase Resizing Plans NO DCANO Available servers in NO
[0 SBR Data Migration Plans
[£] Database Options DCASO

[2] <3 Maintenance DCAMP1
7 SBR Database Status SOAM DCASBR1 Available servers in SOAM
7] SBR Status DCASBR2
77 SBR Database Reconfiguration & DCASBR3

[5] 3 DCA Framework
5] Cenfiguration Ok Apply Cancel

[=] 43 First Dea Application

Figure 23: Places Configuration

DCA Programmer’s Guide, E89013 Revision 01, January 2018 30

CONFIDENTIAL — ORACLE RESTRICTED

= Main Menu
[+ 1 Administration

[=] <3 Configuration

[+ [Networking

Main Menu: Configuration -> Places

[senvers Place Name Type Parent Place Servers

[server Groups ; . ; . .
i DCANO i DCASO iDCAMP1:iDCASBR1:

[7] Resource Domains Site site ; : i :

[Places {DCASBR2i{DCASER3
[1 Place Associations
[+] 1 DSCP
[+] Alarms & Events
[+ [Security Log
[+ 7 Status & Manage
=]] Measurements
[+] [C] Communication Agent
[+ (] Diameter Common
[+ [C] Diameter
[[RADIUS
[+ (1 8BR
[+] (] DCAFramewark
& Help
[Legal Notices
[l Logout

Insert Report
Figure 24: View Places

6.3.3.4 Step A.4: Place Associations Configuration

The Place Association function allows you to create relationships between places. Places are groups of
servers at a single geographic location.

On the Place Associations screen, create the new place association DCAPAL that includes Sitel. Select
the Place Association Type Applications Region, see Figure 25 and Figure 26.

Always select Applications Region type for the DCAs and the SBR databases they use.

The Place Association in the SBR Databases configuration defines the scope of Database users. The
database in the associated Place Association can only be accessed by the DA-MPs in the same Place
Association.

[= 2 Main Menu A
[+ (] Administration
[<] =y Configuration
(3] £ Networking
[servers
[sewver Groups

Main Menu: Configuration -> Place Associations [Edit]

Fri May 20 08:43:19 201¢

Editing Place Association DCAPA1

[0 Resource Domains

1 Places Place Association
[} Place Associations Field Value Description
(+] C1DSCP
[3 Alarms &Events Unique identifier used to 1abel a Place Association. [Default = nfa. Range = A 1-32-character string. Valid characters are alphanumeric, underscore,

[# (1 Security Log Place Association Name * DCAPA1

[+] (] Status & Manage
(+] (] Measurements

dash, and space] [Avalug is required]

(&) [Communication Agent E Place Association Type * Applications Region B The Type of this Place Association [Avalue is required]
(&] (3 Diameter Common

[+ (] Diameter » Places

5] 7 RADIUS

= £398BR

Places 7] Site1 Places in this Place Association
[=] ‘=3 Configuration

[0] SBR Databases
[] SBR Database Resizing Plans Ok Apply Cancel
[1] S8R Data Migration Plans

Figure 25: Create Place Association

DCA Programmer’s Guide, E89013 Revision 01, January 2018 31

CONFIDENTIAL — ORACLE RESTRICTED

= Main Menu
[+ 2] Administration
[=] ‘Z3 Configuration T
[+] O] Metworking
[servers Place Association Name Type Places
[F) server Groups
[7) Resource Domains
[[) Places
[Place Associations
[+] DSCP
[+] O] Alarms & Events
[+] (2] Security Log
[+] [Status & Manage
[+]] Measurements
[+] 1 Communication Agent
[+] [Diameter Common
[+ [Diameter
& O] RADIUS
& 7 SBR
[+]] DCA Framework
& Help
[F) Legal Motices
[= Logout

Main Menu: Configuration -> Place Associations

DCAPA1 Applications Region

Insert Report
Figure 26: View Place Association

6.3.3.5 Step A.5: Resource Domain Configuration

The Resource Domains (RD) screen enables users to assign a set of Server Groups to a Resource
Domain profile, which identified the database type.

On the Resource Domains screen configure the new resource domain SBRRD1. Assign the Server
Group SBRSG1, select the Resource Domain Profile Session Binding Repository for the SBR database
(see Figure 27 and Figure 29).

[= & Main Menu
(+] 1 Administration
[=) £3 Configuration
[#] (] Networking
% :WWSG Editing Resource Domain SBRRD1
erver Groups
[Resource Domains

Main Menu: Configuration -> Resource Domains [Edit]

Fri May 20 08:41:3

[Places Resource Domain
[Place Associations Field Value Description
[2] DSCP
(3] [Alarms & Events Unique identifier used to label a Resource Domain. [Default = nfa. Range = A 1-32-character string. Valid characters are alphanumeric and

5 0 Securiy Log Resource Domain Name * SBRRD1
4

(3] (] Stalus & Manage
(3] [Measurements

underscore] [A value is required]

{3 (3 Communication Agent = Resource Domain Profile * Session Binding Repository B The Profile of this Resource Domain [A value is required]
(3] (] Diameter Commeon
] (3 Dismeter . Server Groups
[1 RADIUS
[MPSG
[S SBR
[3 Configuration [nosG
[) SBR Databases Server Groups SBRSG1 Server Groups associated with this Resource Domain
[7] SBR Database Resizing Plans [] SBRSG2
[1] SBR Data Migration Plans [[] sosG

2] Database Options
[5] £ Maintenance
% QAR Natahaca Qtatis

Ok Apply Cancel

Figure 27: SBR Resource Domain Configuration

DCA Programmer’s Guide, E89013 Revision 01, January 2018 32

CONFIDENTIAL — ORACLE RESTRICTED

On the Resource Domains screen, configure the new resource domain DCARD1. Assign a Server Group
MPSG, select the Resource Domain Profile DCA MPs (see Figure 28 and Figure 29).

[= 2} Main Menu .
(=] (2] Administration
[3 Configuration
(3 (1 Metworking
[servers
[0 server Groups
[] Resource Domains
[Places
[Place Associations
[+ (1 DSCP
(2] (7] Mlarms &Events
[+ (7] Security Log
[(] Status & Manage
[(] Measurements
[+ (] Communication Agent
(=] (2] Diameter Common
(=] (2] Diameter
[(1 RADIUS
[3 SBR
[< £ Configuration
[1] SBR Databases
[0} SBR Database Resizing Plans
[SBR Data Migration Plans
%) Database Options
(5] £ Maintenance
% SRR Natahase Stafiie

]

m

=) Main Menu
[+ (1 Administration
[Z] ‘3 Configuration
[+ (] Networking
[serers
D Server Groups
D Resource Domains
[Places
D Place Associations
[[DSCP
& [Alarms & Events
[+ (O] Security Log
[+ (] Status & Manage
[+ (] Measurements
[(] Communication Agent
[(] Diameter Commaon
& (] Diameter

e manine

Main Menu: Configuration -> Resource Domains [Edit]

Editing Resource Domain DCARD1

Resource Domain

Field Value

Resource Domain Name * DCARD1

Resource Domain Profile * DCA Application MPs

> Server Groups
WPSG
[NoSG
Server Groups [] SBRSG1
[] SBRSG2
[7] 5056

Ok Apply Cancel

Fri May 20 08:42:09

Description
Unigue identifier used to label a Resource Domain. [Default = n/a. Range = A 1-32-character string. Valid characters are alphanumeric and

underscore] [Avalue is required]

B The Profile of this Resource Domain [A value is required]

Server Groups associated with this Resource Domain

Figure 28: DCA MP Resource Domain Configuration

Main Menu: Configuration -> Resource Domains

Resource Domain Name

DCARD1

SBRRD1

Profile Server Groups

DCA Application MPs

Session Binding Repository

Figure 29: View Resource Domain Configuration

DCA Programmer’s Guide, E89013 Revision 01, January 2018 33

CONFIDENTIAL — ORACLE RESTRICTED

6.3.3.6 Step A.6: SBR Database Configuration

On the SBR Databases screen, create the new database USBR1 (see Figure 30).

Select Database Type: Universal, Resource Domain: SBRRD1, Number of Service Groups: 1, Place
Association: DCAPAL, Owner Application: CountULR, as illustrated in Figure 31.

Main Menu: SBR -> Configuration -> SBR Databases -> [Insert]

Adding a new SER Database

Field Value

Database Name *

Database Type * - Select - B

Resource Domain * - Select - B

Number of Server Groups *

Place Association * - Select - B

Owner Application - Select - B

Ok Apply Cancel

Description

Aname that uniquely identifies the SBR Database.
[Default = n/a; Range = A 32-character string. Valid characters are alphanumeric and underscore. Must contain at least one alpha and must not start with a digit] (A
value is required.]

The type of SBR Database
Select ‘Binding’ for a Policy Binding database, or "Session’ for a Policy DRA or Online Charging DRA Session database or Universal for Universal SBR database.
[Default = n/a; Range = Binding’ or ‘Session’ or ‘Universal] [A value is required.]

The Resource Domain that contains the SBR Server Groups configured for use by this database.

Select the Resource Domain that will host this database

[Default = n/a; Range = Configured Resource Domains matching the selected Database Type that have not already been assigned to a Database] [Avalue is
required.]

The number of SBR Server Groups required to host this database

Enter or change the number of Server Groups necessary to support the desired capacity of the database. Ifthe selected Resource Domain already contains Server
Groups, the number of Server Groups in the Resource Domain is displayed in the field, but can be overridden as desired.

[Default = n/a; Range = 1 to 8] [A value is required.]

The Place Association that contains the Places (Sites) that will use this database.

Select the Place Association that is to use this SBR Database

[Default = n/a; Range = Configured Place Associations matching the selected Database Type that have not already been assigned to a Database] [Avalue is
required.]

The name of application that owns the configured SBR DB.

Select Owner Application that is the owner of the SBR Database if the Database Type is Universal. Otherwise
the Owner Application is displayed automatically as PCA’

[Default = none; Range = None, PCA and configured DCA application names]

Figure 30: Create SBR Database

DCA Programmer’s Guide, E89013 Revision 01, January 2018

34

CONFIDENTIAL — ORACLE RESTRICTED

Each U-SBR DB is assigned to an owner DCA. This is necessary for the U-SBR to support multiple
DCAs (meaning, the owner DCA and an arbitrary number of guest DCASs) to query the same U-SBR DB.
The owner DCA can perform all possible queries on the U-SBR DB. Guest DCAs, on the other hand, can
restrict their access to read-only access to the U-SBR DB by checking the Read Only U-SBR Access as
Guest option on the Main Menu: DCA Framework > <DCA Name> > General Options (see Section
9.2.3).

The U-SBR DB configured in a Place Association is only accessed by the DA-MPs in the same Place
Association.

[=] [Main Wenu

3 0 Administraion Main Menu: SBR -> Configuration -> SBR Databases

[= &3 Configuration

[[0 Networking
[seners

[server Graups Table Description: The SBR Databases table contains a row for each configured SBR database, including: the Database Name, the Database Type, the Resource Domain the database is mapped to, the Nurn

D Resource Domains the database, the Place Association that defines the scope of the database, and the Owner Application that owns the database

[Places

[Place Associations

Database Name Database Type Resource Domain Number of Server Groups Place Owner
[(3 DScP
[03 Alarms & Events
[3 Security Log
[3 Status & Manage
[3 Measurements
[3 Communication Agent
[+ [Z] Diameter Common
[+] [Diameter
[] RADIUS
= £YSBR
[=] {3 Configuration
[7 SBR Databases
[7) SBR Database Resizit
[X SBR Data Migration PI
[£] Database Options
[+] Maintenance
[+] [DCAFramework
& Help
[Legal Notices
(= Logout Insert | Edit | Delete
(I v

USBR1 Universal SBRRD1 1 DCAPA1 First Dca Application

Figure 31. View SBR Database

From the NO Main Menu: SBR > Maintenance > SBR Database Status screen, prepare and enable
the USBR1 database.

6.3.4 Step 3: Define the Configuration Data Schema

CountULR does not use any DCA configuration data.

6.3.5 Step 4: Provision the Configuration Data

CountULR does not use any DCA configuration data.

6.3.6 Step 5: Provision DCA Business Logic

The CountULR DCA implements the following business logic:

e When receiving a ULR message, extract the user name from the User-Name AVP and check if a
state has been created for the respective user:

e If the user name is not found, create a state that contains a counter set to 1.

o If the user name already exists, read the existing state, increment the counter and write the state

back to the U-SBR DB.

e When receiving a CLR message, extract the user name from the User-Name AVP and delete the
state corresponding to the respective user, if it exists.

DCA Programmer’s Guide, E89013 Revision 01, January 2018

35

CONFIDENTIAL — ORACLE RESTRICTED

Figure 32 illustrates a typical call flow. CountULR uses three U-SBR API calls: createOrRead,
concurrentUpdate and delete. The U-SBR API is described in Section 11.7.

The very first ULR

Subsequent ULR

l+———RecExists

Increment /—ConcurrentUpdate—b—

MME DCAMP1 USBR1 HSS
for thi r ULR
orthis use CreateOrRead———»1—_ | Counteris
. - A
LcountULR" is not invoked, Ok initialized to 1
ULA is forwarded by DSR ULR >
LA -t ULA
ULR———=] State is found,
CreateOrRead I counter value is

returned

Store new counter

Figure 32: CountULR Call Flow

The Perl code is illustrated in Figure 25.

use constant/{

key types for our app - only NAI is currently used,
the others are for exemplification

IMSI => 0,

SESSION => 1,

NAI => 2,

IPv4 => 3,

command codes for S6 commands
ULR CMD => 316,

CLR_CMD => 317,

b

counter ——
la———— Ok value
ULR o
LA =t ULA
——CLR——
Delete - I
‘ Ok Delete user state
CLR =
< CLA -t CLA

this function is called when receiving a diameter request message

sub process re

sessio
the se
- no
- no
- no
my S$Ssbr
{

re

#o

fe

quest{

n state to be stored on the sbr

ssion state stores:

of requests for this user-name

of success replies for this user-name
of error replies for this user-name
state =

quests => 1 # only requests are currently counted

k replies => 0,
rr _replies => 0

DCA Programmer’s Guide, E89013 Revision 01, January 2018

36

CONFIDENTIAL — ORACLE RESTRICTED

diameter message is the first parameter
my Sparam = shift;
only one key type for this app: NAI
my Skey type = NAI;
get the diameter message object
my Smsg = diameter::Param::message (Sparam) ;
if (!defined (Smsqg)) {
die "Bad diameter message parameter.";

}

try to get the the diameter command code from the diameter message
my $Scmd = diameter::Message::commandCode (Smsqg) ;
if(!defined($cmd)) {

die "No command code in diameter message.";

}

get User-Name from the message
my Suser = diameter::Message::getAvpValue ($Smsg, "User-Name") ;
if (!defined(Suser)) {

could not create Suser

die "Could not get the User-Name value from the message"

}

if (ULR_CMD == $cmd) {

process Update-Location-Request

instantiate and send the "CreateOrRead" SBR stack event

my S$result = dca::sbr::sbrinstance("sbr")->createOrRead (
$key_type,
dca::sbr::KeyDataType: :STRING, S$user,
dca::sbr::StateDataType: :STRING, S$sbr state,
"createOrReadCb") ;

check the "synchronous" error

if (!defined (Sresult)) {
could not create the sbr request
die "could not create the SBR request";

}

elsif (CLR_CMD == $cmd) {

process Cancel-Location-Request

instantiate and send the "Delete" SBR stack event

my S$result = dca::sbr::sbrInstance("sbr")->delete($key type,
dca: :sbr::KeyDataType: :STRING, S$Suser,
"deleteCb") ;

check the "synchronous" error

if(!defined(Sresult)) {
could not create the sbr request
die "could not create the SBR request";

}
else(
die "unknown diameter command received";
}
}

this function is called when receiving a diameter answer message
sub process_answer({

DCA Programmer’s Guide, E89013 Revision 01, January 2018

CONFIDENTIAL — ORACLE RESTRICTED

}

this function is called when receiving an DeleteStateResult
answer from the SBR
sub deleteCb({
my $sbr_code = dca::sbr::result()->code ()
if (!defined($sbr _code)) {
could not get the result code of the SBR answer
die "did not get the result code of SBR answer";

}

if (dca::sbr::ResultCode: :RecNotFound == $sbr code) {
die "could not find a record with the given key on the SBR";
}
elsif(dca::sbr::ResultCode::0k != $sbr_code){
die "SBR error: $sbr code";
}
}

this function is called when receiving an CreateOrReadStateResult
answer from the SBR

sub createOrReadCb

{

my $sbr_code = dca::sbr::result()->code ()
check the result code
if (dca::sbr::ResultCode: :RecExists == $sbr code) {

my S$sbr state = dca::sbr::result()->data();

diameter message is the first parameter
my S$param = shift;
only one key type for this app: NAI
my Skey type = NAI;
get the diameter message object
my $msg = diameter::Param::message ($param);
if(!defined ($Smsqg)) {
die "Bad diameter message parameter.";

}

get User-Name from the message
my Suser = diameter::Message::getAvpValue ($msg, "User-Name") ;
if (!defined (Suser)) {

could not create S$Suser

die "Could not get the User-Name value from the message"

}

record was already existing on the SBR; update it
$sbr state->{requests}++;
my Sresult = dca::sbr::sbrInstance ("sbr")->concurrentUpdate (
$key type,
dca::sbr::KeyDataType: :STRING, Suser,
dca::sbr::StateDataType: :STRING, S$sbr state,
"concurrentUpdateCb") ;
check the error
if (!defined(Sresult)) {
could not create the sbr request
die "could not create the SBR request";

DCA Programmer’s Guide, E89013 Revision 01, January 2018

38

CONFIDENTIAL — ORACLE RESTRICTED

}
}
elsif (dca::sbr::ResultCode::0k != $sbr code) {
die "SBR error: $sbr code";
}
}

this function is called when receiving an ConcurrentUpdateStateResult
answer from the SBR
sub concurrentUpdateCb{

use “result” API function to retrieve error code and data:

my $sbr_code = dca::sbr::result()->code ()

check the result code
if (dca::sbr::ResultCode: :RecObsoleted == $sbr_code){
record was already updated by another MP on the SBR;
try to update it once again
my $sbr state = dca::sbr::result()->data();
diameter message is the first parameter
my S$param = shift;
only one key type for this app: NAI
my S$key type = NAI;
get the diameter message object
my Smsg = diameter::Param::message (Sparam);
if(!defined ($Smsqg)) {
die "Bad diameter message parameter.";

}

get User-Name from the message

my Suser = diameter::Message::getAvpValue ($msg, "User-Name") ;

if (!defined (Suser)) {
could not create Suser
die "Could not get the User-Name value from the message"

}

$sbr state->{requests}++;

my S$result = dca::sbr::sbrInstance("sbr")->concurrentUpdate (
Skey type,
dca: :sbr::KeyDataType: :STRING, S$user,
dca::sbr::KeyDataType::STRING, S$Ssbr state,
"concurrentUpdateCb") ;

check the error

if(!defined(Sresult)) {
could not create the sbr request
die "could not create the SBR request";

}

}
elsif(dca::sbr::ResultCode::0k != $sbr code) {
die "SBR error: S$sbr code";

}

Figure 33: CountULR Perl Code

6.3.6.1 What Does a State Consist Of?

A state is essentially a mapping between a key and a value. What exactly the key and value are is
completely under DCA control. The U-SBR does not attach any semantics to DCA state. In CountULR

DCA Programmer’s Guide, E89013 Revision 01, January 2018

39

CONFIDENTIAL — ORACLE RESTRICTED

the key is the user name extracted from the User-Name AVP and the Value is basically a counter that
counts the total number of ULR messages.

Even though CountULR uses a single key (of type NAI), DCA may, in general, use multiple keys (IMSI,
MSISDN, IP addresses, Diameter Session-ID, etc.).

DCA may distinguish between the different keys by declaring their Key Types. The Key Type helps avoid
collisions like for instance between NAI key “fred” and IPv4 address key 66.72.65.64, or between IP
source address key 1.2.3.4 and destination IP address key 1.2.3.4.

The value associated to a key is the value of a Perl variable. For CountULR, the value is a Perl hash
table containing one key requests that store an integer representing the ULR counter. Perl complex data
structures like hash tables and arrays are converted to JSON and stored in the U-SBR DB as strings.
When retrieved from the U-SBR they are converted back to the original data structure. Scalar Perl
variables, on the other hand, need not undergo a JSON conversion.

Finally, the data type of key and value need to be specified to one of the pre-configured data types:

e dca:sbr::KeyDataType::BCD, dca::shr::KeyDataType::UINT32, dca::sbr::KeyDataType::INT64
e dca:sbr::KeyDataType::STRING, dca::shr::KeyDataType::IPv4, dca::sbr::KeyDataType::IPv6

e dca:sbr::StateDataType::BCD, dca::sbr::StateDataType::UINT32, dca::sbr::StateDataType::STRING,
dca::sbr::StateDataType::IPv4, dca::sbr::StateDataType::IPv6

This helps the U-SBR DB to optimize the way the Key-Value pair is stored and retrieved.

6.3.6.2 What are Asynchronous API Calls and Callbacks?

The dca: :sbr::sbrInstance (“sbr”) > createOrRead, dca: :sbr::sbrInstance (“sbr”) >
concurrentUpdate, and dca: :sbr: :sbrInstance (“sbr”) >delete API functions initiate, each
of them, an U-SBR DB query. They are asynchronous functions, in the sense that they do not wait until
a response from the U-SBR is received. They construct the U-SBR DB query and return immediately, to
allow the other Diameter messages to be processed. The query itself is sent after the event handler
execution completes.

How can DCA learn about the outcome of the U-SBR DB query it just sent? It may be observed that all
the U-SBR API functions can register, as the last parameter, the name of a callback subroutine. The
callback subroutine is invoked by the DCA framework when the outcome of the corresponding U-SBR DB
query is known. The outcome may be: (i) an error condition that prevented the U-SBR query to even be
sent; (ii) the U-SBR DB response itself; or (iii) an error condition indicating that no response has been
received within a certain timeout interval.

6.3.6.3 How is the U-SBR State Returned to the Perl Script?

In the callback subroutine the DCA programmer can use the dca: :sbr::result () class to retrieve the
error code and, if the query was successful, the result.

6.3.6.4 What is Concurrent in a concurrentUpdate?

Incrementing a counter in a distributed system is not as trivial an operation as it may seem because race
conditions may occur between different threads, processes or hosts that attempt to increment the same
counter at the same time.

In our case, such race condition may occur when ULR messages for the same user name are received at
around the same time or in quick succession. This can obviously happen when the network contains
multiple DA-MPs, but it can also happen in our simplified topology with one single DA-MP because there
are always multiple Perl interpreters running simultaneously that execute the event handlers. There are
therefore multiple CountULR execution instances, running in parallel, at any given time.

DCA Programmer’s Guide, E89013 Revision 01, January 2018 40

CONFIDENTIAL — ORACLE RESTRICTED

A CountULR execution instance is basically reading the counter value from the U-SBR DB record that
corresponds to the user name, incrementing it and updating the record on the U-SBR, for example, a
read-increment-update sequence. The trick is to check that the record a CountULR execution instance is
trying to update is the same record that was previously read. If it is not the same, then one or more other
CountULR execution instances have incremented the counter in the meantime and the operation needs
to be repeated on the new counter value, otherwise the counter value is corrupted and the counter value
is, in the end, less than it should be.

When the concurrentUpdate query detects that the U-SBR DB record has been updated, it automatically
returns the new record so that an explicit new read operation is not needed.

This mechanism is called optimistic offline locking and is often encountered in transactional DBs. It is
optimistic because the rate of the race conditions is expected to be relative low compared to total number
of increment operations. It is offline because the race condition is resolved by re-trying the operation,
rather than effectively locking the record. Figure 34 illustrates such a race and how the optimistic offline
locking mechanism solves it. For simplicity, we show two competing DA-MPs, however, as already
mentioned, it equally applies to one single DA-MP running multiple Perl interpreters.

MME DCAMP2 DCAMP1 USBR1 HSS
ULR———» /{Assume counter==3 ‘
- CreateOrRead————————»]
counter ++; counter becomes 4 }\ - RecExists
ULR - /{ counter is still 3 |
1 CreateOrRead—]
counter ++; counter becomes 4 l+— RecExists
but it should actually be 5! ||
Nevertheless, DCAMP1 wins the race —ConcurrentUpdate—
-I—Oki\{ counter is now 4 ‘
ULR -
- ULA - ULA
The new value of the 7C0ncurrentUpdatE4h\ counter has been updated by DCAMP1, it
counter (4) is returned | = Record Obsoleted is no longer the ,instance” DCAMP2 read,
T therefore updating it is not allowed
counter ++; counter becomes 5 |
ConcurrentUpdate————
< Ok \{counteris now 5 ‘
ULR -
le——ULA - ULA

Figure 34: A Counter Increment Race

DCA Programmer’s Guide, E89013 Revision 01, January 2018 41

CONFIDENTIAL — ORACLE RESTRICTED

6.3.7 Step 6: Render the Flow Control Chart

Render the Flow Control Chart based on the Perl script. Save the code and check the syntax.

[E—— v . :
[Resource Domains* = <[>|nlva|a | Fie v | Edi v ExecBlocks v Fit Resize
[0 Places :
[Place Associations = Startrequest =
[C1DSCP
2] Alarms & Events ° ’
¥ (3 SecurityLog N _thaz wast oo
[+ [Status & Manage Request (UL) me
[]] Measurements process_request e when it receives
/(1 Communication Agent = —
= (] Diameter B
= (I RADIUS
ER=E: (sbri>createdrRead | ('sbr)->delete
[3 Configuration — — upen receiving an ULR message, the app will check whether there is already
[0] BR Databases ‘J <J d with the User-Name in the ULR message. if it does

[7) SBR Dalabase Reg
[7] S8R Data Migratior,_
] Database Options | createOrReadCh deleteCh

encUpdateState

lresdy an SBR state associzted with the User-Name in the incomin

is

[=] 3 WMaintenance — — UL2 messzge, the zpp will update it using Concurrenslpdate
* SBR Status -
77} SBR Dalabase Req upen receiving an CLA message, the app will try to deleve the state data
25 DCA Framework ("sbr"}=concurrentUpdate keyed on the coresponding User-Neme value
(] Configuration —)| —back i
[=] (3 First Dca Application ‘J a o D

2] General Options
[Trial MPs assignmi
[7) Application Control

@ Hel

Output

Figure 35: Flow Control Chart

6.3.8 Step B: Logical to Physical U-SBR DB Name Mapping

Logical-to-physical U-SBR name mapping provides the glue between the Perl script and the U-SBR
topology. It enables:

The Perl script to remain unchanged across deployments (Lab > Live, Oracle > Customer) by using
the same logical names for the U-SBR DBs, while the topology and names of the physical U-SBR
DBs in each particular network may vary.

The Perl script to remain unchanged across Place Associations inside the same deployment,
because the names of physical U-SBR DBs are different in each Place Association. This situation is
not apparent in our example, because we are using a network that consists of only one site.

Different versions of the same DCA to use different logical names mapping to the same physical U-
SBR DBs.

Different versions of the same DCA to use the same logical names mapping to different physical U-
SBR DBs, because the DB layout (number of U-SBR DBs or their scope site vs. global) has changed
in newer versions.

A DCA to map a logical U-SBR DB name to a physical U-SBR DBs of another DCA.

The logical-to-physical U-SBR DB mapping is configured per DCA version. In the Application Control
screen, select a DCA version and click the SBR DB Name Mapping, see Figure 36.

Main Menu: DCA Framework ->CountULR -> Application Control

Filter* ~
Version Name Status Comments Creation Time Production Time Flowchart Checksum Schema Checksum
Version1 Trial 2016-May-19 14:06:24 EDT 15ce22fab7 16fcd857626a0db614384
Config Tables and Data Development Environment w = mpot
Business Logic

Create New Development Copy to New Development A
=| Export:

Business Logic

Make Development Make Trial Make Production =2

Figure 36: SBR DB Name Mapping

DCA Programmer’s Guide, E89013 Revision 01, January 2018 42

CONFIDENTIAL — ORACLE RESTRICTED

Assign the logical U-SBR name “sbr” to the physical U-SBR Name USBR1, see Figure 37.

The “sbr’ name must be consistently used in the Perl script as a parameter to the sbrinstance() each time
an U-SBR API function is invoked. As a result, the queries sent from the Perl script to “sbr” is delivered to
the USBRDB1.

Main Menu: DCA Framework -> CountULR ->Application Control ->Versionl -> SBR DB Name Mapping

SBR Database Logical Name SBR Database Physical Name
sbr USBR1
Ingert | | Edit = Delete

Figure 37: View SBR DB Name Mapping

6.3.9 Step 7: Test the DCA Version

See Section 3.3.7.

6.3.10 Step 8: Promote the DCA Version to Production
See Section 3.3.8.

7. Monitoring DCA

This chapter provides a general description of Custom MEALSs, templates and their purpose. The
monitoring of the execution of DCA is possible using the Custom MEAL feature.

The Custom MEAL feature enables a DCA programmer to define and use measurements, KPIs, and
events, on demand:

e Measurements are used to count specific events or amounts, as required by DCA business logic.
Their historical values measured during specific time intervals and/or on specific hosts are available
via reports;

o KPIs display real-time statistics of the measured events or amounts, like for instance average values;

¢ Events may be triggered automatically when the currently measured values exceed the configured
thresholds.

¢ Alternatively, events may be triggered explicitly from DCA code.

The Custom MEAL feature hides most of the complexity of the underlying DSR objects that implement the
measurements, KPIs, and events by defining a number of four templates, which are designed to
implement specific tasks:

e The Counter template — is used to count events. The counter values are available only off-line
through the Measurement Reports.

e The Rate template — is most typically used to calculate message rates. It generates KPIs,
Measurement Reports and may be used to automatically raise alarms if the configured threshold
values are exceeded.

e The Basic template — is used to measure averages or number of elements in a set (for example, to
calculate average size of AVPs, messages or number of users registering/deregistering). It
generates KPIs, Measurement Reports and may be used to automatically raise alarms if the
configured threshold values are exceeded.

DCA Programmer’s Guide, E89013 Revision 01, January 2018 43

CONFIDENTIAL — ORACLE RESTRICTED

e The Event template — is used to explicitly raise/clear alarms or generate events from the Perl script
when specific business logic conditions are detected.

Each of the templates is available in scalar and arrayed format.

We denote by "differentiation” the process of assigning a C-MEAL template instance to a DCA. We
denote by "un-differentiation" the reverse process of removing a C-MEAL from a DCA and basically
returning it to the pool of un-differentiated C-MEAL, from where it can be re-assigned to another (or even
the same) DCA.

8. DCA Using Custom MEALSs

Chapter 7 introduced the Custom MEAL (C-MEAL) templates and their applicability. This chapter
describes a simple DCA that uses a Rate C-MEAL to monitor the rate of the incoming Diameter requests
with just two lines of Perl code.

8.1 The Rate DCA

The Rate DCA differentiates a Rate C-MEAL, initializes it, and pegs it every time a Diameter request is
received. The operator can monitor the incoming message rate in real time (KPI), check the history of the
measured value (measurement report) and get notified when the configured thresholds are exceeded
(alarm).

8.2 Prerequisites

The DCA framework must have been previously activated as described in [1] CGBU_018429 - DCA
Framework and Application Activation and Deactivation. Also, a DCA with the name “Rate” is activated
as described in [1] CGBU_018429 - DCA Framework and Application Activation and Deactivation.

The Rate DCA has to be enabled on all the DA-MPs in the network from the SO Main Menu: Diameter >
Maintenance > Applications.

An ART rule is added that enables Diameter requests to be delivered to the Rate DCA.

8.3 The Process

The following steps must be followed to provision the Rate DCA:

Custom MEAL

Business Logic and Configuration Data Provisioning Configuration
Step 1: Configure the general options and behavior of the Rate DCA. Step I: Differentiate a
Step 2: Create a new development version of the Rate DCA. scalar Rate C-MEAL.

Step 3: Define the structure of tables to store the Rate configuration data.
Step 4: Provision the Rate configuration data.
Step 5: Provision the Rate business logic — essentially a Perl script.

Step 6: Render the Flow Control Chart based on the Perl script. Save
and perform syntax checks.

Step 7: Test the Rate DCA: configure the Trial DA-MPs and promote Rate to Trial state.
Step 8: Compile Rate, promote Rate to Production state.

Steps 1 to 8 are similar to those described in Chapter 3. Step | is required to assign a C-MEAL to the
Rate DCA, which can be then be used via the C-MEAL API, which is described in Section 11.6.

Step | may be executed in any order relative to steps 1 to 5.

DCA Programmer’s Guide, E89013 Revision 01, January 2018 44

CONFIDENTIAL — ORACLE RESTRICTED

8.3.1 Step I: Differentiate a C-MEAL

C-MEALs are differentiated from the Main Menu: DCA Framework > Rate > Custom MEALSs screen,
by clicking Insert. For the Rate DCA in particular, TestRate, a scalar rate C-MEAL, is differentiated (see
Figure 38). TestRate raises an alarm when the configured thresholds are exceeded. The threshold
values represent percentages from the 100% Threshold Value, which in our example is exactly 100.

Main Menu: DCA Framework -> Rate -> Custom MEALSs

Tue Jul 12

100% Alarm Alarm
Mezsuremem State Threshold Autoclear Throttling Threshold Threshold Threshold Threshold Threshold Threshold

Name Template Type " o n - N -
Typ value Interval Interval Min Clear Min Set Maj Clear Maj Set Crit Clear Crit Set

TestRate Rate Scalar Completed 100 - ~ B5 T 78 20 24 90

Insert Edit Delete Pause updates

Figure 38: TestRate Differentiation

8.3.2 Step 1: Configure DCA General Options and Behavior
See Section 3.3.1.

8.3.3 Step 2: Create a New Development Version

See Section 3.3.2.

8.3.4 Step 3: Define the Configuration Data Schema

Rate does not need any DCA configuration data.

8.3.5 Step 4: Provision the Configuration Data

Rate does not need any DCA configuration data.

8.3.6 Step 5: Provision DCA Business Logic

The Rate DCA implements a simple business logic that consists of pegging the Rate C-MEAL each time a
Diameter request is received.

The Perl code is illustrated in Figure 39. Note that the C-MEAL name used to initialize the Perl object
must be the same as the one configured for the C-MEAL during differentiation (TestRate).

my SrateObject = new dca::meal::rate("TestRate");

die "Failed to bind to the rate template" unless SrateObject;
force *compilation* error if
rateObject initialization fails

sub process request({
die "Pegging 'TestRate' Failed" unless S$rateObject->peg();
a *runtime* error will be generated in the unlikely
event peg() fails
}

And that's it! Alarms will be automatically raised when the configured
thresholds are exceeded

Figure 39: The Rate DCA Code

DCA Programmer’s Guide, E89013 Revision 01, January 2018 45

CONFIDENTIAL — ORACLE RESTRICTED

8.3.7 Step 6: Render the Flow Control Chart

The same process described in Section 3.3.6 is followed.

8.3.8 Step 7: Test the DCA Version

The same process described in Section 3.3.7 is followed.
At this stage, we can finally monitor the Rate DCA in the following ways:

e The DCA:Rate KPI group includes all the KPlIs that belong to the Rate DCA. On the Main Menu:
Status & Manage > KPIs the DCA:Rate group is included in the KPI filter criteria (see Figure 40). As

a result, the exponentially smoothened average of the ingress rate (TestRate) is displayed in real time
(see Figure 41).

e The history of the measured values can be accessed from the Main Menu: Measurements >
Report screen. The DCA:Rate measurements group includes all the measurements that belong to
the Rate DCA and is included in the filtering criteria (see Figure 42). As a result, the history of the
TestRate measurements is displayed (see Figure 43).

¢ An alarm with the corresponding severity is raised when the respective threshold values are
exceeded. This can be seen for instance in Figure 41. The alarm details can be accessed from Main
Menu: Alarms & Events. Figure 44 illustrates the alarm history, obtained by progressively
increasing the message rate above the critical set threshold and then progressively reducing it below
the minor clear threshold.

Main Menu: Status & Manage -> KPls [Group: "Server']

Tue Jul 12 08:39:14 2016 EDT

Entire-Metwork HPCO&GNO HPCOBS0 HPCOSMP1 HPCOESER1

T Filter Options
Nen Arrayed CPUFerCore o) Go Reset
Group
Mame Value Desc E
CPU 0.61 % Percentage utilization of all processors on the DCARate -
RAM 4.36% Percentage utilization of physical memmﬁt -Groupe-
Swiap 0.00 % Percentage utilization of swap space onthe ¢ ComAgent
Disk 0.21 % Percentage utilization of disk space on the ser | DCA Framework
Shiem 0.03% Percentage utilization of shared memoryonth DCA:Rate
Uptime 4.95 days The total amount of time{days HH:MM 55) the SER
Server
USBR
-Place Associations- -

Figure 40: Filter DCA:Rate KPIs

DCA Programmer’s Guide, E89013 Revision 01, January 2018 46

CONFIDENTIAL — ORACLE RESTRICTED

Main Menu: Status & Manage -> KPls [Group: ‘DCA:Rate’]

Entire-Network

Non Arrayed

Name Average Max Min Median Sum Desc

TestRate 8.7 e 78.71 e 78.71 testrate kpi

The ingress rate has increased
above the major threshold set
value (70)

Tue Jul 12 08:51:03 2016 EDT

R o O 4

=
0 HPCOBHO (ACTIVE HETWORK OAM&P) | Updates enabled 2 3 1]
“ol=SEVERITY8aridfilter op=EQUALBaridfilter val=MAIOR Mot
Figure 41. Display TestRate KPI
Main Menu: Measurements -» Report (Filtered)
Tasks ~
MPSG HFCOERMP1
Hon-Arrayed
Filter
e Measurement:
ey DCA:Rate j Fifteen Minute j Reset
201 B
2016 | Scope:
201G Metwork Element j MPSG j - Resource Daornain - j - Place - j - Place Association - j Reset
Column Filter:
Mone j Like j
Time Range:
1 Hours j Ending j 2016 Jul j 12 j [us} j ul] j Reset
Go
Figure 42: Filter DCA:Rate Measurements
DCA Programmer’s Guide, E89013 Revision 01, January 2018 a7

CONFIDENTIAL — ORACLE RESTRICTED

Main Menu: Measurements -> Report (Filtered)

MPSG HFCOEMPY

Non-Arr aved
: Percent
Timestamp TestRatefivy TestRateCnt TestRatePeak
Complete
2016-07-12 08:00:00 EDT 100 0.000000 1] 1]
2016-07-12 08:15:00 EDT 100 12135344 10923 M
2016-07-12 08:30:00 EDT 100 49.994529 299498 120
2016-07-12 08:45:00 EDT 100 6Y.921644 61125 129
Figure 43: Display the TestRate measurements
Main Menu: Alarms & Events -> View History (Filtered)
Tue Jul 12
Ewvent ID Timestamp Severity Product Process NE Server Tvpe Instar
Event Text Additional Info
33355 2016-07-12 08:53:37.948 EDT CLEAR PracWatch SO_HPCOB HPCOBMP1 DCA DCAS
GN_BUATHRESHICLR Metric DCAST below minar threshald ** Current: 63 Onset
TestRateAlrm More...
33355 2016-07-12 08:53:18.948 EDT MINOR PracWatch S80_HPCOB HPCOBMP1 DCA DCAS
GMN_ABYTHRESHMIRN Metric DCAST above minar threshold 4+ Current 72 Onset:
TestRateAlrm Mote...
33355 2016-07-12 025318948 EDT CLEAR . Procatch S0_HPCOE HPCOEMP1 DA DCAg
GMN_BUATHRESHICLR Metric DCAST below major threshold #* Current: 72 Onset.. -
TestRateAlrm More... E
33355 2016-07-1208:51:15.948 EDT MAJOR - Procvatch SO_HPCOE HPCOBMP1 DCA DCAS
T GN_ABYTHRESHMWRN Metric DCAS1T above major threshold ** Current: 84 Onset...
BstRatedlm More...
33355 2016-07-12 08:51:15.948 EDT CLEAR . Prociatch S0_HPCOB HPCOBMP1 DCA DCAS
P GN_BUATHRESH/CLR Metric DCAS1 below critical threshold ~ Current: 84 Ons ..
estRateAlmm More...
33355 2016-07-12 08:30:29.948 EDT CRITICAL PracWatch S0_HPCOB HPCOBMP1 DCA DCAS
GN_ABYTHRESHMRN Metric DCAST above critical threshold ** Current: 90 Ons.
TestRateAlrm More...
33355 2016-07-12 02:29:47.948 EDT MAJOR . ProcWatch S0_HPCOE HPCOBEMP1 DA DCAS
<
Export Report
Figure 44: TestRate Alarm History
8.3.9 Step 8: Promote the DCA Version to Production
The same process described in Section 3.3.8 is followed.
DCA Programmer’s Guide, E89013 Revision 01, January 2018 48

CONFIDENTIAL — ORACLE RESTRICTED

9. GUI Overview

9.1 NOJ/SO differences

Table 1: NO/SO GUI differences

NO SO

Framework Configuration Read-only
General Options Read-only
Custom MEALs Read-only
Trial MP Assignment Read-only

New application versions are created -

Existing application versions are copied -

Business Logic and/or NO Config data SO Config data imported/exported
imported/exported

SBR DB Mane Mapping Read-only

Flowchart and Script Development Read-only

Application version state transitions Read-only

Defining the configuration tables (schema) Read-only

Provisioning NO Configuration Data (table content) | Provisioning SO Configuration Data (table content)
NO configuration read-only.

- System Options

9.2 NO Screens

The DCA framework left hand menu on the NO includes the following screens:

e Configuration Screen
Each activated application is represented by the separate menu folder with the given application name.
The application folder on the NO includes the following screens (Application Control screen contains the
buttons that lead to other DCA screens):
e Custom Meals
e General Options Screen
e Trial MPs Assignment Screen
¢ Application Control Screen

e Create New Development Screen

e Copy to New Development Screen

¢ Import Pop-Up Window

e Export Pop-Up Window

¢ SBR Database Name Mapping

e Development Environment

e Tables Screen

e Provision Tables Screen

DCA Programmer’s Guide, E89013 Revision 01, January 2018 49

CONFIDENTIAL — ORACLE RESTRICTED

[=] ‘-3 DCA Framewark
[£] Configuration
[=] 3 DCA Frame Work Application
[] Custom MEALs
[5| General Options
[Trial MPs assignment
(] Application Control
[+] [C] Kiran Test Application
[+ O] Test App Mumber 4

Figure 45: NO Screens

9.2.1 Configuration Screen

The NO Main Menu: DCA Framework > Configuration screen allows configuring DCA Framework
parameters: Maximum Size of Application State and Maximum Size of the Key. See Figure 46.

Main Menu: DCA Framework -> Configuration

DCA Framework Configuration

Field Value Description

Maximum size of the application state (in bytes) to be stored in the U-SBR.

Maximum Size of Application State *
NTILI SAre Of Sppacaiion S | E=S [Default = 256; Range = 1-54 kB [Avalue is required]

Maximum size ofthe key (in bytes) used to lookup the application state stored in the U-SBR.

Maximum Size of the Key *
v — [Default = 256: Range = 1-1024 B [A value is required)

Apply Cancel

Figure 46: NO Configuration Screen

DCA Programmer’s Guide, E89013 Revision 01, January 2018

CONFIDENTIAL — ORACLE RESTRICTED

9.2.2 Custom MEALs

9.2.2.1 View Custom MEALs

The NO Main Menu: DCA Framework > <DCA Name> > Custom MEALSs screen (illustrated in Figure
47) lists the Custom MEAL templates differentiated for the current DCA. It also enables new Custom
MEAL templates to be differentiated and differentiated Custom MEAL templates to be modified.

There are a limited number of Custom MEAL templates of each type for all DCAs activated in a network.
An error displays if the DCA programmer attempts to exceed these limits.

It is not possible to modify the counter/basic/rate/event and scalar/arrayed type of a differentiated Custom
MEAL template. If the type needs to be modified, then a new Custom MEAL template is created
(provided the limits have not been exceeded yet) and the old one is deleted.

Main Menu: DCA Framework -> First Dca App -> Custom MEALs

Filter* -
100% Alarm Alarm
Measurement Threshold Threshold Threshold Threshold Threshold Threshold
Name Template Type Type State Threshold Autoclear Throttling Min Clear Min Set Maj Clear Maj Set Crit Clear Crit Set
Value Interval Interval
MyEvent Event ~ Completed ~ 300 60 ~ ~ ~ ~ ~ ~
Insert Edit Delete Pause updates

Figure 47: The Custom MEAL View Screen

9.2.2.2 Configure the Counter Custom MEAL Template

Figure 48 illustrates the configuration options for inserting a Counter template.

Main Menu: DCA Framework -> First Dca App -» Custom MEALs -> [Insert]

Adding a new custom measurement or event

Field Value Description

Measurement/Event name. It will be used to derive the names of
Measurement Name * Mycﬂtj related counters, KPls, max and average measurements, alarms.
[Default = empty, Range = A 32-character string]. [A value is required.]

Custom MEAL template type.
Counter

Ti late Ti
emplate fype [Default = Rate; Range = Counter, Rate, Basic, Event]

For Counter, Rate and Basic Custom MEALs, specify if the Custom MEAL
Measurement Type Scalar IZ| is Scalar or Arrayed.
[Default = Scalar, Range = Scalar, Arrayed].

Ok Apply Cancel

Figure 48: The Counter Template Configuration Screen

DCA Programmer’s Guide, E89013 Revision 01, January 2018 51

CONFIDENTIAL — ORACLE RESTRICTED

9.2.2.3 Configure the Basic Custom MEAL Template

Figure 49 illustrates the configuration options for inserting a Basic template. The Basic template is
optionally associated with an alarm, which is automatically raised if the configured thresholds are
exceeded.

Main Menu: DCA Framework -> First Dca App -» Custom MEALSs -> [Insert]

Adding a new custom measurement or event

Field Value Description

Measurement/Event name. It will be usedto derive the names of
Measurement Name * MyBasic related counters, KPls, max and average measurements, alarms.
[Default = empty; Range = A 32-character string]. [A value is required]

Template Type B Custom MEAL template type.
’ ” aske [Default = Rate; Range = Counter, Rate, Basic, Event]

For Counter, Rate and Basic Custom MEALs, specify if the Custom MEAL
Measurement Type Scalar is Scalar or Arrayed
[Default = Scalar, Range = Scalar, Arrayed]

MyBasic Description KPI description text

KPI Dx ipti
escription [Default = Empty; Range = A 255-character string).

If checked, an alarm will be created

G ite Al
enerate Alarm [Default = Checked; Range = Checked, Unchecked]

Alarm Description Alarm description text

Alarm Description
o [Default = Empty; Range = A 255-character string).

An absolute value that specifies

For Rate templates: the maximum events per second the Custom MEAL is expected to count (for instance the maximum messages per second).

For Basic templates: the maximum value the Custom MEAL is expected to measure (for instance the maximum number of bytes, AVPs, etc. in a
message).

The minor, major and critical threshold values are defined as percentages from this value.

[Default = Emply, Range = 1- (2"62)-1 (i.e. 92223372036854775807)]

100% Threshold Value 5000

Minor alarm set threshold in %,

Alarm Minor Set Threshold 50 [Default = Empty; Range = 2 - 96]

Minor alarm clear threshold in %

Alarm Minor Clear Threshold 40 [Default = Emply: Range = 1 - 95]

Major alarm setthreshold in %.

Alarm Major Set Threshold 70 [Default = Emply; Range = 4 - 98]

Major alarm clear threshold in %

Alarm Major Clear Threshold 60 [Default = Empty; Range = 3- 97]

Critical alarm setthreshold in %

Alarm Critical Set Threshold a0 [Default = Emply: Range = & - 100]

Critical alarm clear threshold in %,

Alarm Critical Clear Threshold gp [Default = Empty: Range = 5 - 99]

Ok Apply Cancel

Figure 49: The Basic Template Configuration Screen

DCA Programmer’s Guide, E89013 Revision 01, January 2018

52

CONFIDENTIAL — ORACLE RESTRICTED

9.2.2.4 Configure the Rate Custom MEAL Template

Figure 50 illustrates the configuration options for inserting a Rate template. The Rate template is
optionally associated with an alarm, which is automatically raised if the configured thresholds are
exceeded.

Main Menu: DCA Framework -> First Dca App -> Custom MEALSs -> [Insert]

Adding a new custom measurement or event

Field Value Description

MeasurementEvent name. It will be used to derive the names of
Measurement Name * MyRate related counters, KPIs, max and average measurements, alarms.
[Default = empty; Range = A 32-character string]. [Avalue is required]

Custom MEAL template type.
Rate

Template Type
P o [Default = Rate; Range = Counter, Rate, Basic, Event]

For Counter, Rate and Basic Custom MEALs, specify if the Custom MEAL
Measurement Type Scalar El is Scalar or Arrayed
[Default = Scalar, Range = Scalar, Arrayed]

MyRate Description KPI description text.

KPI D ti
escription [Default = Empty; Range = A 255-character string]

If checked, an alarm will be created.
[Default = Checked; Range = Checked, Unchecked)]

Generate Alarm

Alarm Description Alarm description text

Alarm Description
v [Default = Empty, Range = A 255-character string].

An absolute value that specifies.

For Rate templates: the maximum events per second the Custom MEAL is expected to count (for instance the maximum messages per second).

100% Threshold Value 40000 message).

The minor, major and critical threshold values are defined as percentages from this value.
[Default = Empty, Range = 1- (2"63)-1 (i.e. 9223372036854775807)].

Minor alarm set threshold in %

Alarm Minor Set Threshold 50 [Default = Emply; Range = 2- 9]

Minor alarm clear threshold in %.

Alarm Minor Clear Threshold 40 [Default = Empty; Range = 1 - 95]

Major alarm set threshold in %

Alarm Major Set Threshold 70 [Default = Empty; Range = 4 - 98]

Major alarm clear threshold in %.

Alarm Major Clear Threshold 60 [Default = Empty: Range = 2 - 97]

Critical alarm set threshold in %

Alarm Critical Set Threshold ag [Default = Empty; Range = 6 - 100]

Critical alarm clear threshold in %.

Alarm Critical Clear Threshold 8o [Default = Emply; Range = 5 - 99]

Ok Apply Cancel

Figure 50: The Rate Template Configuration Screen

For Basic templates: the maximum value the Custom MEAL is expected to measure (for instance the maximum number of bytes, AVPs, efc.in a

DCA Programmer’s Guide, E89013 Revision 01, January 2018

53

CONFIDENTIAL — ORACLE RESTRICTED

9.2.2.5 Configure the Event Custom MEAL Template

Figure 51 illustrates the configuration options for inserting an Event template.

Main Menu: DCA Framework -> First Dca App -> Custom MEALSs -> [Insert]

Adding a new custom measurement or event

Field Value Description

Measurement’Event name. It will be used to derive the names of
Measurement Name * MyEvent related counters, KPIs, max and average measurements, alarms.
[Default = empty; Range = A 32-character string]. [Avalue is required.]

Custom MEAL template type.

Template Type
pl yp Event E| [Default = Rate; Range = Counter, Rate, Basic, Event]

Rlarm Description Alarm description text.

Alarm Description
P [Default = Empty; Range = A 255-character string].

Time Interval in seconds after which a raised alarm is autocleared unless not explicitly
Alarm Autoclear Interval 300 cleared or re-asserted. Avalue of 0 means the alarm never autoclears.
[Default = 300; Range = 0-3600]

Time interval in seconds during which multiple events with the same event number and instance
Alarm Throttling Interval g0 are suppressed if raised. Avalue of 0 means no throttling is performed.
[Default = 60; Range = 0-300]

Ok Apply Cancel

Figure 51: The Event Template Configuration Screen

DCA Programmer’s Guide, E89013 Revision 01, January 2018 54

CONFIDENTIAL — ORACLE RESTRICTED

9.2.3 General Options Screen

The NO Main Menu: DCA Framework > <Application Name> > General Options screen enables
specifying the Perl Subroutines for Diameter Request and Answer, Application State Data TTL, Read
Only U-SBR Access as Guest and Max. U-SBR Queries per Message. See Figure 52.

Main Menu: DCA Framework -> DCA Frame Work Application -> General Options

Mon Jun 1Z 06:46:20 2016

DCA Application General Options

Perl Subroutine for Diameter Request™ process_request [Default = process_request. Range = A 255 character string
Valid characters are alphanumeric and underscore. Must contain at least one alpha and must not start with a digit] [A value is required

The name of the Perl subroutine to be invoked when a Diameter answer is received
Perl Subroutine for Diameter Answer process_answer [Default = process_answer. Range = A 255 character string
‘Valid characters are alphanumeric and underscore. Must contain at least one alpha and must not start with a digit]

The TTL of the application state data stored in the U-SBR by the DCA App, In seconds

Application State Data TTL 120 [Default = 120. Range = 60 - 604800] [4 valug is required]

If checkedthe DCA App will be able to access U-SBR DBs owned by other DCA Apps only read-only. Attempts to update or delete such U-SBR DB records will resultin an eror.

I unchecked the DCA App will have full access rights to U-SBR DBs owned by other DCA Apps

Note that if one or more “guest' DCA Apps handle application states stored in a U-88R DB owned by anather DCA, unexpected behavior of the DCA Apps ar even race conditions may occur if the
Read Only U-SBR Access as Guest business logics of the "guest and “owner” DCA App are not semantically consistent. A typical restriction in this sense would be for instance that the U-SBR DB records can only be deleted by the DCA

Appthat created them. Also note that 3 “guest’ DCA App will use its own Application State Data TTL setting for updating the TTL ofthe U-SBR DB records that it handies. Unexpected behavior of the

DCA Apps or even race cenditions may occur if the "guest” and “owner” DCA App have substantially different stateTTLsec settings

[Default = Checked. Range = Checked, Unchecked]

Maximum number of SBR Queries a DCA App may send per Diameter message (request or answer). Subsequent U-SBR queries will return an error.

Max. U-SBR Queries per Message *
o g = [Default = 5. Range = 1 - 10] [A value is required]

Apply | Cancel

Figure 52: NO General Options

9.2.4 Trial MPs Assignment Screen

The NO Main Menu: DCA Framework > <DCA Name> > Trial MPs Assignment screen allows
specifying which DA-MPs run the Trial version of DCA (see Figure 53). If there is no Trial version
available, the Trial DA-MPs runs the Production version, if there is any available.

If a DCA version is promoted to the Trial state but no Trial DA-MPs are currently configured assigned, a
warning message displays.

Main Menu: DCA Framework -> DCA Frame Work Application -> Trial MPs assignment

Trial MP assignment

==

Gremlin-DAMP-1 Gremlin-DAMP-2
Gremlin-DAMP-3 =
Gremlin-DAMP -4

Apply Cancel

Figure 53: NO Trial MPs Assignment

DCA Programmer’s Guide, E89013 Revision 01, January 2018 55

CONFIDENTIAL — ORACLE RESTRICTED

9.2.5 Application Control Screen

The NO Main Menu: DCA Framework > <Application Name> > Application Control screen (see
Figure 54) allows:

Listing all application versions configured in the system

Inserting a new application version (via NO New Development Insert Screen)

Copying and modifying an existing application version (via NO New Development Copy Screen)
Exporting an application version entirely (business logic + provisioned data from the NO)
Exporting only the NO provisioned data of an application version

Importing a previously exported application version (business logic + NO provisioned data) (via NO
Import Pop-Up Window).

Importing only the NO provisioned data to an existing application version (via NO Import Pop-Up
Window)

Accessing the application version configuration tables (via NO Tables View Screen)

Accessing business logic and flowchart of an application version (via NO Development Environment

Screen)
Deleting an existing application version
Changing the status of an application version (Development, Trial, Production, Archived)

Main Menu: DCA Framework -> DCA Frame Work Application -> Application Control

Version Name Status Comments Creation Time Production Time Flowchart Checksum Schema Checksum
DCA_FW_App_v1 Archived first app 2016-May-20 10:07:53 EDT 2016-Jun-09 16:44:44 EDT 800afa59e0fb0fc1562ce3b6279ccal d7caf76ebfi5e06e999174260bbd4e85d
DCA_FW_App_vS Development fifth app 800afa59e0fb0f1c1562ce30627ccal
DCA_FW_App_v3 Development third app 2016-May-23 10:23:39 EDT 2016-Jun-09 16:34:10 EDT 800afa59e0fb0f1c1562ce3b6279ccaf fi6cd730fe34bdaef7 1fob3b144a6c07
DCA_FW_App_vd Development fourth app 2016-May-23 10:24:02 EDT 800afa58e0fb0f1c1562ce3b6279ccal a610cb96499621dc7a2e54463928ee28
dca_fw_app_v1 Development first-pt2 app 2016-May-23 10:57:55 EDT B800afa59e0fb0f1c1562ce306279ccal
e s e eSS oS s s S S
I AA_BB_CC v2 . Development | second-pi2 app 1+ 2016-May-23 10:58:35 EOT © | 800afa58e0fb0f1c1562ce3b6279ccal i
L i P P i i P
AA_BB_CC_v3 Development third-pt2 app 2016-May-23 11:00:01 EDT 800afa59e0fb0f1c1562ce30627ccal
DCA_FW_App_v6 Development fifth-pt2 app 2016-May-23 11:02.23 EDT 800afa59e0fb0f1c1562ce30627ccal
DCA_FW_App_v2 Trial second app 2016-May-23 10:20:41 EDT 2016-Jun-09 16:37:39 EDT 800afa59e0fb0fc1562ce3b6279ccal 044e6909510203465e9dc503a82e0002
RBAR_Lite Production 2016-Jun-03 132740 EDT 2016-Jun-09 16:45:40 EDT ebfbd277205083e70861c60011d54124 be0ab38176340b3870e4b8dd652e10953
Config Tables and Data = Development Environment | SBR DB Name Mapping + Import
Business Logic ALevel Config Data
Create New Development Copy to New Development A
=| Export
Delete Business Logic | AlLevel Config Data | Both

Make Development Make Trial Make Production hd

Figure 54: NO Application Control

o

a

Mon Jun 13 07:07:20 2016 EDT

DCA Programmer’s Guide, E89013 Revision 01, January 2018

56

CONFIDENTIAL — ORACLE RESTRICTED

9.2.6 Create New Development Screen

The NO Main Menu: DCA Framework > <Application Name> > Application Control > Create New
Development screen allows creating a new DCA version with a given name and comments. It is
accessed by clicking Create New Development on the Application Control screen, see Figure 55.

Main Menu: DCA Framework -> Test App Number 4 -> Application Control -> [Create New Development]

Adding a new application version

Field Value Description

Unigue name of the Application Version.
Version Name * [Default = n/a; Range = A 32-character string
Valid characters are alphanumeric and underscore. Must contain at least one alpha and must not start with a digit] [Avalue is required.]

Optional comment.

C 1:
omments [Default = nfa. Range = A 255 character string].

Ok Apply Cancel

Figure 55: NO Create New Development Screen

Currently, there might be up to 10 application versions at a time.

9.2.7 Copy to New Development Screen

The NO Main Menu: DCA Framework > <Application Name> > Application Control > Copy to New
Development screen allows copying an entire DCA version, consisting of business logic (Perl script,
flowchart, and configuration table schemas) and the NO provisioned configuration data, into a new
version. Itis accessed by selecting the application version and clicking Copy to New Development on
the Application Control screen, see Figure 56.

Main Menu: DCA Framework -> Test App Number 4 -> Application Control -» [Copy to New Development]

Infa -

Info

o ‘ « The version will be copied together with the business logic (tables + flowchart) and A level config data

Unique name of the Application Version
Version Hame * Testappvl [Default = n/a; Range = A 32-character string.
Valid characters are alphanumeric and underscore. Must contain at least one alpha and must not start with a digit] [A value is required]

Optional comment

C t:
omments [Default = n/a. Range = A 255 character string]

Ok Apply Cancel

Figure 56: NO Copy to New Development

When the new Application Version is copied, it becomes visible on the Application Control screen
displaying the user provisioned name in the Version Name column and comments in the Comments
column.

The copied Application also includes the business logic (DB tables + Perl script) and the A level (NO
level) configuration data (if any was specified).

DCA Programmer’s Guide, E89013 Revision 01, January 2018 57

CONFIDENTIAL — ORACLE RESTRICTED

9.2.8 Export Pop-Up Window

The exported application version is stored in the form of a JSON file.
DCA Framework GUI offers three export options:

e Export the business logic only (that includes the defined tables, flow control chart, the script, custom
Meals, KPIs, Events associated with the application version, logical to physical SBR Mapping. It does
not include the provisioned data).

e Export the business logic and the configuration data (in addition to the business logic the provisioned
data for the tables is also exported).

e Export the configuration data only.
For the first option, select the application version and click Export Business Logic (becomes enabled
when the row is selected).

For the second option, select the application version and click Export Both (becomes enabled when the
row is selected).

For the third option, select the application version and click Export A Level Config Data (becomes
enabled when the row is selected). The export popup window is illustrated in Figure 57.

i . - T —
Main Menu: DCA Frame Opening Test App Number 4-Testapp4vl.json ‘. Iﬁ]
Emor ~ You have chosen to open:

Version Name Status || Test App Number 4-Testapp4vl.json ion Time Flow
Mmoo St A o o e
| Testapp4v1 : Developa which is: json File (118 bytes) :

I | 1

from: hitps://100.64.48.200
What should Firefox do with this file?

! Browsze...

) Save File

Do this automatically for files like this from now on.

Settings can be changed using the Applications tab in Firefox's Options.

o] [[cnea]

Figure 57: NO Export

When the user tries to export the business logic, there is a validation to check whether the flowchart/script
has been compiled. If not, the export is aborted and the error is given.

The A level (NO level) configuration data can be exported from the NO machine, but not from the SO.

9.2.9 Import Pop-Up Window

The NO Import Pop-Up window allows specifying a JSON file from which the business logic (if required)
and the NO provisioned data is imported.

Note: The provisioned data imported to the existing business logic is appended to the existing data
rows.

If the user wants to overwrite the configuration data, it is recommended to first delete all provisioned rows
on the Provision Table screen and then import the new configuration data.

DCA Programmer’s Guide, E89013 Revision 01, January 2018 58

CONFIDENTIAL — ORACLE RESTRICTED

DCA Framework GUI offers three import options:

e Import the business logic only (that includes the defined tables, flow control chart, the script, custom
Meals, KPIs, Events associated with the application version, logical to physical SBR Mapping. It does
not include the provisioned data import; hence, the defined tables are empty after the import).

e Import the business logic and the configuration data (in addition to the business logic the provisioned
data for the tables is also imported).

e Import the configuration data only.

For the first option, click Import Business Logic (always enabled) on the NO Application Control screen.
Leave the checkbox Import also Config data unchecked, see Figure 58. Select the file.

For the second option, click Import Business Logic (always enabled) on the NO Application Control
screen. Check Import also Config data the checkbox. Select the file.

For the third option, select the application version and click Import A Level Config Data (becomes
enabled when the row is selected), see Figure 59. Select the file.

Main Menu: DCA Framework -> Test App Number 4 -> Application Control

Version Name Status Comments Creation Time Production Time Flowchart Checksum Schema Checksum
Lt s e ettt ettt ettt it
| Testapp4v1 i Development | 1+ 2016-Jun-10 09:18:47 EDT . H H
i i i i i i

Import business logic
File Browse... | Mo file selected.

Import also config data:
Aport on first error:

Import | Cancel

Figure 58: NO Import Business Logic

Main Menu: DCA Framework -> Test App Number 4 -> Application Control

Version Name Status Comments Creation Time Production Time Flowchart Checksum Schema Checksum
[Frmmmmmmmmmmmmmmmmees B Dttt B ettt e intuteiele ettt i Ittt ettt qTTTmTmmssssmsssssmeses
1 Testapp4v1 i Development | H 3- -10 09:18:47 EDT | H H

Import config data

File: No file selected.

Abort on first error:

Import | | Cancel

Figure 59: NO Import Configuration Data

During the import, validations are performed in a particular order to ensure the format of DCA
configuration data to be imported is compatible with that of the target DCA version.

As a result, a number of fatal errors may occur during the import, which forces the import to be aborted
regardless of Abort on first error checkbox. Such fatal errors are:

e File larger than 25MB.

DCA Programmer’s Guide, E89013 Revision 01, January 2018 59

CONFIDENTIAL — ORACLE RESTRICTED

e File has wrong structure or missing data.
e All the errors that happen during the business logic import.

o |If the user tries to import the configuration data to an existing application version, but none of the
table names from the imported file matches the table names of the selected application.

o If the user tries to import the configuration data to an existing application version, but none of the field
names in the tables from the imported file matches the field names in the tables of the selected
application.

e Level mismatch. A-level DCA configuration data can be imported only on the A level. The same
applies to the B level data.

Non-fatal errors, on the other hand, let the user decide whether to abort the import or not (depending on
the value of Abort on first error checkbox).

9.2.10 SBR DB Name Mapping Screen

The NO Main Menu: DCA Framework > <Application Name> > Application Control > <Version
Name> > SBR Database Name Mapping View screen (see Figure 60) allows viewing and configuring
the mapping between U-SBR DB logical names (as used in Perl script) and U-SBR DB physical names. It
is accessed by selecting an application version and clicking SBR DB Name Mapping on the Application
Control screen.

Note: All the SBR names referred in the application version script are matched to the SBR physical
names.

Main Menu: DCA Framework -> Test App Number 4 -> Application Control -» Testapp4v1 -> SBR DB Name Mapping

SBR Database Logical Name SBR Database Physical Name

Insert | Edit Delete

Figure 60: NO SBR DB Name Mapping View

The NO Main Menu: DCA Framework > <Application Name> > Application Control > <Version
Name> > SBR DB Name Mapping Insert screen (see Figure 61) allows creating the new mapping
between U-SBR DB logical names (as used in Perl script) and U-SBR DB physical names. It is accessed
by clicking Insert on the SBR DB Name Mapping View screen.

Main Menu: DCA Framework -> DCA Frame Work Application -> Application Control -> AA_BB_CC_v3 -> SBR DB Name Mapping -> [Insert]

Mon Jun 13 08:52:

Insert logical-to-physical SER DB mapping

Field Value Description

Logical name ofthe SBR database as defined in the script
SBR DB Logical Hame * [Default = n/a; Range = A 32-character string
‘ialid characters are alphanumeric and underscore. Must contain at least one alpha and must not start with a digit] [A value is required.]

Ok Apply Cancel

Figure 61: NO SBR DB Name Mapping Insert

DCA Programmer’s Guide, E89013 Revision 01, January 2018 60

CONFIDENTIAL — ORACLE RESTRICTED

Specify the logical name that is used by the application version script and move the corresponding
physical SBRs to the right list Included SBR Databases.

Each DCA running on a particular DA-MP monitors the administrative state of the resolved physical U-

SBR DBs and their sub-resource routing state, and updates its own operational state to Unavailable in

any of the following cases:

e The U-SBR DB’s administrative state is not Enabled.

e The U-SBR DB’s administrative state is Enabled but all of its sub-resources are unavailable or are not
reporting.

The Alarm ID 33306 is raised if a logical U-SBR DB name cannot be resolved to a physical U-SBR DB

name (none of the physical U-SBR DBs mapped to a logical U-SBR DB is located in the same Place

Association as the DA-MP performing the resolution). The Alarm ID 33306 is cleared when the logical-to-
physical U-SBR DB resolution process is (re-)triggered.

The NO Main Menu: DCA Framework > <Application Name> > Application Control > <Version
Name> > SBR Database Name Mapping Edit screen allows editing the mapping between U-SBR DB
logical names (as used in Perl script) and U-SBR DB physical names.

9.2.11 Development Environment

Development Environment is accessed by selecting the application version and clicking Development
Environment on the Application Control screen. The DCA Development Environment (DCA-DE) is
where a custom Diameter application developer can edit, save, check syntax, and compile the application
code for a Diameter Custom Application.

See [1] CGBU_018429 - DCA Framework and Application Activation and Deactivation for more details.

9.2.12 Tables Screen

The NO Main Menu: DCA Framework > <Application Name> > Application Control > <Version
Name> > Tables View screen (see Figure 62) allows:
e Listing all the config tables (NO+SO) defined for an application version

¢ Inserting/editing a new config table (NO or SO) for the development or trial application version (via
NO Table Insert/Edit Screen).

¢ Deleting an existing config table (NO or SO) for the development or trial application version

e Viewing an existing config table of an archived or production application version (via NO Table View
Screen).

e Accessing the Provision Table View and Insert/Edit screens (via NO Provision Table View Screen,
NO Provision Table Insert Screen and NO Provision Table Edit Screen).

The Tables View screen is accessed by selecting the application version and clicking Config Tables and
Data on the Application Control screen.

Main Menu: DCA Framework -> DCA Frame Work Application -> Application Control -=> DCA_FW_App_v2 -> Tables

Table Name Description Single Row Level
table2 NO NO
Insert | | Edit View Delete Provision Table

Figure 62: NO Tables View Screen

DCA Programmer’s Guide, E89013 Revision 01, January 2018 61

CONFIDENTIAL — ORACLE RESTRICTED

Insert, Edit, and Delete are disabled on the Tables View screen for the archived and production
application versions.

View is enabled for the archived and production application versions if the table is selected.
View is disabled for the development and trial application version.

Provision Table is always enabled if the NO table is selected (it is disabled for the SO tables from the
NO GUI).

Table 2 illustrates the access rights for DCA configuration schema and data provisioning tables. The
NO/SO DCA database tables (schema) can be created, deleted, and modified from the NO GUI for the
development and trial application versions; they can be only viewed for the archived and production
application version. The NO DCA database tables can be provisioned anytime from the NO GUI. The
SO tables cannot be provisioned from the NO GUI.

Table 2: NO GUI Tables and Configuration Data Accessibility

The accessibility of level A and level B table SO GUI

schema and content from the NO GUI Archived Production Development, Trial
NO tables schema (level A) ro ro rw

NO tables content (level A) rw rw rw

SO tables schema (level A — shares same ro ro rw

field as NO tables schema

SO tables content (level B) N/A N/A N/A

ro: read-only rw: read-write N/A: not applicable

The NO Main Menu: DCA Framework > <Application Name> > Application Control > <Version
Name> > Table Insert screen (see Figure 63) allows defining a new configuration table (NO or SO). ltis
accessed by clicking Insert on the Tables View screen for the development and trial application versions.

DCA Programmer’s Guide, E89013 Revision 01, January 2018 62

CONFIDENTIAL — ORACLE RESTRICTED

Main Menu: DCA Framework -> DCA Frame Work Application -> Application Control -> AA_BB_CC_v3 -> Tables -» [Insert]

Mon Jun 13 09:32:54 201¢

Adding a new table

Field Value Description

Unigue name of the Table
Table Name * [Default = n/a; Range = A 32-character siring.
Valid characters are alphanumeric and underscore Must contain at least one alpha and must not start with a digit] [A value is required.]

Optional Description

D ti
escription [Default =n/a. Range = A 255 character string].

Indicates ifthe table must have one single row.

Single Ri
ingle Row [[Default=Unchecked Range= Checked, Unchecked]

Level @ NO Configuration level of the table (NO or S0).
o 50 [Default=NO. Range=N0, S0].

Table Fields *

Field Name Unigue name of the Table Field
[Default = n/a; Range = A 32-character string. Valid characters are alphanumeric and underscore. Must contain at least one alpha and must not start with a digit]
Optional description

Description [Default = n/a. Range = A 255 character string).

Unique Indicates ifthe table field must be unique

[Default=Unchecked. Range=Checked, Unchecked]

Indicates ifthe table field must be mandatory.

Mandatory [[Default=Unchecked. Range=Checked, Unchecked]

Data Type
[Default=n/a. Range= Integer, Float, UTF8String,OctetString, IP Address, DiameterURI Diameteridentity, Enumerated, Boolean).

+ Integer: UnsignedG4/SignedB4
« Float [+/-Jnumber.number)[e/E[+-Jnumber], for example 12.3 or 1.23e+1
« UTF8String
Data Type - Select - B, » OctetString: hexadecimal value prefixed with Ox
» |P Address: IPvd (decimal numbers separated by a period) IPvE (RFC4281, section 2.2; form 1 and 2 are supported)
+ DiameterURI: "aaa:" FQDN [port] [transport] [protocol J"aaas " FQDN [port] [transport] [protocol], see RFCB733
« Diameterldentity. FQDN or Realm,see RFCE733
« Enumerated: Comma separated list of values, which can be separate items (a,b,c) orin form of : (a:1,b:2,c:3).
= Boolean: truefalse

Remove

Ok Apply Cancel

Figure 63: NO Tables Insert Screen
Currently, there might be up to 10 configuration tables per application version (NO+SO).
The configuration table definition includes:

e Table Name and Description
o Number of table rows (single vs multiple up to 2000 rows)
e Table level (whether the table resides on the NO or the SO)
e Table Fields (up to 20 now)
e Field Name and Description
e Whether the field is unique
e Whether the field is mandatory
e Field Data Type
e Field Default value
The table fields can be of the following types (depending on the selected data type, ranges must be also
defined):
¢ Integer (Range: Min. and Max. values)
e Float (Range: Min. and Max. values)

DCA Programmer’s Guide, E89013 Revision 01, January 2018 63

CONFIDENTIAL — ORACLE RESTRICTED

e UTF8String (Range: Max. length)
e OctetString (Range: Max. length)
o |Paddress

e DiameterURI

e Diameterldentity

e Enumerated (The values)

e Boolean

The NO Main Menu: DCA Framework > <Application Name> > Application Control > <Version
Name> > Table Edit screen allows editing the schema of an existing DCA configuration table (NO or
SO).

The NO Main Menu: DCA Framework > <Application Name> > Application Control > <Version
Name> > Table View (Read-only Insert/Edit) screen allows viewing a DCA configuration table in read-
only mode. It is accessed when the table is selected and View is clicked on the NO Tables View screen
for the archived and production application version.

9.2.13 Provision Tables Screen

The NO Main Menu: DCA Framework > <Application Name> > Application Control > <Version
Name> > Provision Table View screen (Figure 65) allows:

e Listing all the data rows provisioned for the NO configuration table

e Inserting a new data row to the NO configuration table (via NO Provision Table Insert Screen)

e Editing a data row of the NO configuration table (via NO Provision Table Edit Screen)

e Deleting a data row from the NO configuration table

o Deleting all provisioned rows at once

It is accessed by selecting the table and clicking Provision Table on the Tables View screen, see
Figure 64.

Main Menu: DCA Framework -> DCA Frame Work Application -> Application Control -> DCA_FW_App_v2 -> Tables

Table Name Description Single Row Level
Parm parm MO MO
| el I T T T T T T T T T T T T T | i B a
| table2 b L NO » NO 1
L 1 1 1 Jd
vdTable1 210 YES 50

Insert Edit View Delete Provision Table

Figure 64: Provision Table Button
Provision Table is disabled for the SO tables from the NO GUI, see Table 2.

DCA Programmer’s Guide, E89013 Revision 01, January 2018 64

CONFIDENTIAL — ORACLE RESTRICTED

Main Menu: DCA Framework -> DCA Frame Work Application -> Application Control -> DCA_FW_App_v2 -> Provision Table

Table: table2

kit ints Ipokipo

Insert | Edit @ Delete Delete All Back

Figure 65: NO Provision Table View Screen

Up to 2000 rows of data can be provisioned per table unless the table has only single row (the Single
row checkbox has been checked on the Table Insert screen).

The NO Main Menu: DCA Framework > <Application Name> > Application Control > <Version
Name> > Provision Table Insert screen (see Figure 66) allows inserting a new data row to the NO
configuration table.

Main Menu: DCA Framework -> DCA Frame Work Application > Application Control <> DCA_FW_App_v2 -> Provision Table -> [Insert]
Tu

Adding a new entry
Table: table2

Field Value Description

kit * [Avalue is required]
ints* [Avalue is required]

Ipoklpo* [[Avalue is required]

Ok Apply Cancel

Figure 66: NO Provision Table Insert Screen
During the data insert, the GUI performs the following validations:

¢ Whether the mandatory value is present

e Whether the unique value is unique

e Whether the maximum of data rows is reached

o Whether the data inserted corresponds to the specified field data type

¢ Whether the data inserted is between the specified min-max range for the field

e Whether the entered sting value is no longer than the allowed maximum for the field

e Whether the entered enumerated value is within the allowed range of enumerated values for the field
o FEtc.

The NO Main Menu: DCA Framework > <Application Name> > Application Control > <Version
Name> > Provision Table Edit screen allows editing a data row of the NO configuration table.

DCA Programmer’s Guide, E89013 Revision 01, January 2018 65

CONFIDENTIAL — ORACLE RESTRICTED

9.3 SO Screens

The DCA framework left hand menu on the SO includes the following screens:

e Configuration Screen (NO screen, read-only on the SO)

Each activated application is represented by the separate menu folder with the given application name.
The application folder on the NO includes the following screens (Application Control screen contains the
buttons that lead to other DCA screens):

e Custom Meals (NO screen, read-only on the SO)

e General Options Screen (NO screen, read-only on the SO)

e Trial MPs Assignment Screen (NO screen, read-only on the SO)
e Application Control Screen

Import Pop-Up Window

Export Pop-Up Window

SBR Database Name Mapping (NO screen, read-only on the SO)

Development Environment (NO screen, read-only on the SO)

Tables Screen (NO screen, read-only on the SO, except for View and Provision Table)
e Provision Tables Screen

System Options Screen
[=] ‘Z3 DCA Framework
[’i"‘] Configuration
[=] ‘=3 DCAFrame Work Application
(] Custom MEALs
[#| General Options
(] Trial MP=s assignment
[Application Control
["i"‘] Systemn Options
[+] ([Kiran Test Application
[+] O] TestApp Mumber 4

Figure 67: SO Screens

DCA Programmer’s Guide, E89013 Revision 01, January 2018 66

CONFIDENTIAL — ORACLE RESTRICTED

9.3.1 Application Control Screen

The SO Main Menu: DCA Framework > <Application Name> > Application Control screen (see
Figure 68) allows:

e Listing all application versions configured in the system

e Exporting only the SO provisioned data of an application version (via SO Export Pop-Up Window)

e Importing only the SO provisioned data to an existing application version (via SO Import Pop-Up
Window).

e Accessing the application version configuration tables (via SO Tables View Screen)
e Accessing the flowchart and business logic of an application version (via development environment,

read-only)
Main Menu: DCA Framework -> First Dca Appl -» Application Control
Tue]
Version Name Status Comments Creation Time Production Time Flowchart Checksum Schema Checl

[rmmmmsmmmmmem e | bbb R REEE bbb bbbttty bt iilotleteinteiieiots Ittt ettt el qmmmmmmm e

T 1
Version1 1 Trial | |1201E-.Jun—01 141256 EDT F |: c0adbb8b5cd7ala3bd237e5d135f3685 |:

4 1

Config Data Development Environment SBR DB Mame Mapping Import: | B Level Config Data
Export | B Level Config Data

Figure 68: SO Application Control Screen

9.3.2 Export Pop-Up Window

The B level (SO level) configuration data can be exported from the SO machine, but not from the NO.

To export the configuration data to a JSON file, select the application version and click Export B Level
Config Data (becomes enabled when the row is selected).

9.3.3 Import Pop-Up Window

The SO Import Pop-Up window allows specifying a JSON file from which the SO provisioned data is
imported.

Note: The provisioned data imported to the existing business logic is appended to the existing data
rows.

If the user wants to overwrite the configuration data, it is recommended to first delete all provisioned rows
on the Provision Table screen and then import the new configuration data.

The B level (SO level) configuration data can be imported only to the SO machine.

To import the configuration data from the JSON file, select the application version and click Import B
Level Config Data (becomes enabled when the row is selected). Select the file.

9.3.4 Tables Screen

The SO Main Menu: DCA Framework > <Application Name> > Application Control > <Version
Name> > Tables View screen (see Figure 69) allows:

e Listing all the config tables (NO+SO) defined for an application version

¢ Viewing an existing config table (via NO/SO Table View Screen)

e Accessing the Provision Table View and Insert/Edit screens (via SO Provision Table View Screen,
SO Provision Table Insert screen and SO Provision Table Edit Screen).

DCA Programmer’s Guide, E89013 Revision 01, January 2018 67

CONFIDENTIAL — ORACLE RESTRICTED

The SO Tables View screen is accessed by selecting the application version and clicking Config Data on
the SO Application Control screen.

Main Menu: DCA Framework -> First Dca Appl -> Application Control -> Version1 -> Tables

Table Name Description Single Row Level

Insert Edit View Delete Provision Table

Figure 69: SO Tables View Screen (empty)
Insert, Edit, and Delete are disabled on the SO Tables View screen.
View is enabled if the table is selected.
Provision Table is always enabled if the NO/SO table is selected.

Table 3 illustrates the access rights for DCA configuration schema and data provisioning tables on the
SO. The NO/SO DCA table schemas can only be viewed. The level A DCA configuration tables content
can only be viewed from the SO GUI. The level B DCA configuration tables can be provisioned.

Table 3: SO GUI Tables and Configuration Data Accessibility

The accessibility of level A and level B table SO GUI

schema and content from the SO GUI Archived Production Development, Trial
NO tables schema (level A) ro (replicated) | ro (replicated) ro (replicated)
NO tables content (level A) ro (replicated) | ro (replicated) ro (replicated)
ﬁg;aabsleli OS (t::belrgsasflcer:/ eerlng — shares same ro (replicated) | ro (replicated) ro (replicated)
SO tables content (level B) rw rw rw

ro: read-only rw: read-write

The SO Main Menu: DCA Framework > <Application Name> > Application Control > <Version
Name> > Table View (Read-only Insert/Edit) screen allows viewing a configuration table in read-only
mode. It is accessed when the table is selected and View is clicked on the SO Tables View screen.

9.3.5 Provision Tables Screen

The SO Main Menu: DCA Framework> <Application Name> > Application Control > <Version
Name> > Provision Table, View screen allows:
e Listing all the data rows provisioned for the SO-rooted DCA configuration table.

e Inserting a new data row to the SO-rooted DCA configuration table (via SO Provision Table Insert
Screen).

e Editing a data row of the SO-rooted DCA configuration table (via SO Provision table Edit Screen).
e Deleting a data row from the SO-rooted DCA configuration table.
e Deleting all provisioned rows at once.

Note: The NO-rooted DCA configuration tables, as well as the schema definitions of both the NO-rooted
and SO-rooted DCA configuration tables are accessible on the SO only in read-only mode.

DCA Programmer’s Guide, E89013 Revision 01, January 2018 68

CONFIDENTIAL — ORACLE RESTRICTED

The SO Provision Table View screen is accessed by selecting the table and clicking Provision Table on
the SO Tables View screen.

The SO Main Menu: DCA Framework > <Application Name> > Application Control > <Version
Name> > Provision Table, Insert screen allows inserting a new data row to the SO-rooted DCA
configuration table.

The SO Main Menu: DCA Framework > <Application Name> > Application Control > <Version
Name> > Provision Table, Edit screen allows editing a data row of the SO-rooted DCA configuration
table.

9.4 System Options

System Options screen is present on the SO only. See Figure 70- Figure 74.
System Options screen enables the configuration of the DSR application parameters that are:

e Relevant to the operational status Unavailable. These options allow you to specify the behavior when
the application state is Unavailable (Main Menu: Diameter > Maintenance > Applications). The
possible behavior is:

e Continue Routing
o Use default route + specify application unavailable route list
o Send Answer with Result-Code AVP + specify Result-Code and Error Message

e Send Answer with Experimental-Result AVO + specify Result-Code, Error Message, and Vendor-
ID.

Application unavailable configuration
@ Continue Routing
Default Route
Send Answer with Result-Code AVP
Send Answer with Experimental-Result AvP

Application Unavailable Action Action to be taken when the application is unavailable to process messages

Ifthe Unavailability Action is "Default Route” and the application is not available, the requests will be routed

e R B G L using this Route List and Peer Routing Rules will be bypassed

2002 UNABLE TO DELIVER The Result-Code or Experimental-Result-Code value to be returned in an Answer message when a
Application Unavailable Result-Code = = message is not successfully routed because of the application being unavailable. If Vendor-Id is
I— configured, this value is encoded as Experimental-Result-Code AVP else Result-Code AVP
[Default = 3002; Range = 1000 - 5999]

The Error-Message AVP value to be returned in an Answer message when a message is not successfully

Application Unavailable Error Message |Application Unavailable routed because of the application being unavailable
[Default = "Application Unavailable™; Range = 0 to 64 characters]
Application Unavailable Vendor-id l— The Vendor-d AVP value to be retumned in an Answer message when a message is not successfully routed

because of the application being unavailable. [Default = n/a; Range = 1 - 4294967295]

Figure 70: System Options for the Unavailable Operation Status

e Relevant to the case when the DRL resources are exhausted. The behavior is to send an error
message with the specified Result-Code, Error Message, and Vendor-Id.

Resource exhaustion configuration

@ The Result-Code or Experimental-Result-Code value to be returned in an Answer message when a
3004 TOO_BUSY |L| . Mmessage is not successfully routed because of internal resource being exhausted. If Vendor-1d is
l_ configured, this value is encoded as Experimental-Result-Code AVP else Result-Code AVP.
[Default = 3004; Range = 1000 - 5999]

Resource Exhaustion Result-Code

The Error-Message AVP value to be returned in an Answer message when a message is not successfully
Resource Exhaustion Error Message Application Resource Exhaust routed because of internal resource being exhausted
[Default = "Application Resource Exhausted™, Range = 0to 64 characters]

The Vendor-Id AVP value to be returned in an Answer message when a message is not successfully routed
Resource Exhaustion Vendor-Id because ofinternal resource being exhausted
[Default = nfa; Range = 1 - 4294967295]

Figure 71: System Options for the Exhausted DRL Resources

e Relevant to the run-time error. These options allow to specify the behavior in case of a run-time
error. Runtime errors fall into two categories:

o Perl specific runtime errors, for example, division by zero, a “die” statement, calling an undefined
(utility, not event handler) subroutine etc.

e Runtime errors triggered by the DCA framework, for example, invoking an event handler that
does not exist or exceeding the maximum configured number of executed opcodes.

DCA Programmer’s Guide, E89013 Revision 01, January 2018 69

CONFIDENTIAL — ORACLE RESTRICTED

The possible behavior is:

e Continue Routing
e Discard
o Send Answer with Result-Code AVP + specify Result-Code and Error Message

¢ Send Answer with Experimental-Result AVO + specify Result-Code, Error Message, and
Vendor-Id.

Field Value Description
Run-time error configuration

@Continue Routing
- Discard 5 - - 3
Run-Time Error Action g ST FRE R T Action to be taken when the DSR application experiences a run-time error.

Send Answer with Experimental-Result AVP

. N The Result-Code or Experimental-Result-Code value to be returned in an Answer message when a
3002 UNABLE_TO_DELIVER message is not successfully routed because of the application run-ime error. If Vendor-ld is configured,
l_ this value is encoded as Experimental-Result-Code AVP else Result-Code AVP.
[Default = 3002; Range = 1000 - 5999]

Run-Time Error Resuli-Code

The Error-Message AVP value to be returned in an Answer message when 3 message is not successfully

Run-Time Error Message Run-Time Error routed because of the application run-time error.

[Default = "Run-Time Error”, Range = 0 to 64 characters]

The Vendor-ld AVP value to be returned in an Answer message when a message is not successfully routed

Rune-Time Error Vendor-ld because of the application run-time error.

[Default = n/a; Range = 1 - 4294967295]
Figure 72: System Options for the Run-Time Error

¢ Realm and FQDN that are placed in Answer message generated by DCA. These are the values that
are placed in the Origin-Realm and Origin-Host AVPs of the Answer message generated by DCA. If
they are not configured, local node Realm and FQDN for the egress connection are used.

Configuration for the DCA generated Answer

Value to be placed in the Origin-Realm AVP of the Answer message generated by DCA. If not configured,
local node Realm for the egress connection is used

Realm is a case-insensitive string consisting of a list of Iabels separated by dots, where a label may
contain letters, digits, dashes () and underscore (_’). A label must start with a letter, digit or underscore
and must end with a letter or digit. Underscores may be used only as the first character. A label must be at
most 63 characters long and a Realm must be at most 255 characters long.

Fully Qualified Domain Name is required to configure Realm

[Default = nfa; Range = Avalid Realm.]

Realm

Value to be placed in the Origin-Host AVP of the Answer message generated by DCA. If not configured, local
node FQDM for the egress connection is used

FQDM is a case-insensitive string consisting of a list of Iabels separated by dots, where a label may
contain letters, digits, dashes (') and underscore (_"). A label must start with a letter, digit or underscore
and must end with a letter or digit. Underscores may be used only as the first character. A label must be at
most 63 characters long and a FQDN must be at most 255 characters long.

Realm is required to configure Fully Qualified Domain Mame

[Default = nfa; Range = Avalid FQDRN]

Fully Qualified Domain Name

Figure 73: System Options for the Realm and FQDN

e Application invocation. This option is needed to indicate if the subsequent invocation of application
on a different node in the network is allowed or not.

e If unchecked, the DSR-Application-Invoked AVP is inserted, preventing the same DSR application on
another DSR node from receiving the Diameter message.

Application invocation

If checked, subsequentinvocation of DCA Framework Application on a different node in the network is
allowed

Allow Subsequent Application Invocation If unchecked, the DSR-Application-Invoked AVP will be inserted, preventing the same DSR application on
another DSR node from receiving the Diameter message.
[Default=Unchecked. Range=Checked, Unchecked)]

Figure 74: System Options for the Application Invocation
10. Development Environment Overview

10.1 Development Environment Modes

DCA Development Environment opens if the user clicks Development Environment on the Main Menu:
[Application Name] > Application Control screen. Development Environment is disabled if the
Application Control: Script and Flow Control Chart DCA Framework View Permission is unchecked.

The DCA Development Environment can be accessible in two modes of operation:

e Edit Mode (any change is possible and can be saved)

DCA Programmer’s Guide, E89013 Revision 01, January 2018 70

CONFIDENTIAL — ORACLE RESTRICTED

e View Mode (the Code Text Editor is read-only, Toolbox and Action commands are disabled, the Flow
Control Chart interactions are disabled)

The DCA DE can be accessible in the View only mode for the following cases:

e |If the selected application version is either in Production or Archived status.

e Ifthe Application Control: Script and Flow Control Chart DCA Framework Edit Permission is
unchecked while the View Permission is checked.

DCA DE starts, but does not retrieve the Perl code and Flow Control Chart data if the View Permission is
unchecked.

The DCA DE can be accessible in the Edit mode for the following cases:

o If the selected application version is either in Development or Trial status and the Application
Control: Script and Flow Control Chart DCA Framework Edit Permission is checked.

10.2 Layout

The DCA Development Environment GUI Layout contains a top banner and the following sections, see
Figure 75 and Figure 76:

Application Banner

>

o

=

S

= Code Text
Editor

Flow Control

- Chart

=

c

(4]

£

=

O

Q

S Commands

s Output

<

Figure 75: Layout Structure

DCA Programmer’s Guide, E89013 Revision 01, January 2018 71

CONFIDENTIAL — ORACLE RESTRICTED

. Version Status: Development
OR’ACLG DCA Development Environment [KK test app, v1] s

100%
£ > a v @ @ File v Edit v+ ExecBlocks » Fit Resize

* 0|1l

@

(ito

Output Fit Resize

Figure 76: Layout Print Screen
The Application Banner displays the application version name and status.

The Toolbox displays the available commands for creating Flow Control Chart symbols: Create Exec
Block, Create Async Call, Create Termination, Create Connection, see Figure 77.

The Action Commands display the available commands for managing the application code and Flow
Control Chart: Render Chart, Save, Check Syntax, Compile, see Figure 77.

The Flow Control Chart displays the Flow Control Chart illustration of the application code structure.
The Code Text Editor displays the application code.

The Commands Output displays output messages from Action Commands.
= Create Exec Block
- Create Async Call
O Create Termination

Create Connection

Render Chart

Save

(10

Check Syntax
Compile

Figure 77: Toolbox and Actions

DCA Programmer’s Guide, E89013 Revision 01, January 2018 72

CONFIDENTIAL — ORACLE RESTRICTED

10.3 Code Text Editor

The Code Text Editor includes the drop-down menus File, Edit, Exec Blocks and a Fit Resize button.

File Edit Exec Blocks Fit Resize

Figure 78: Code Text Editor
The File drop-down menu contains the following commands:

e Open (for uploading the Perl script from the selected file)

e Save (for saving the Perl script as a file)

The Exec Blocks drop-down menu contains all executions blocks present on the Flow Control Chart,
providing navigation of code subroutines.

The Edit drop-down menu contains the following commands:

e Undo (the command erases the last change in the code, revert it to an older state)
¢ Redo (the command reverses the undo)

¢ Find/ Replace (the command searches for a specified text and when found, replace it with another
specified text).

The application code consists of:

e Internal variable declarations

e The main subroutine

e Other referenced subroutines (if any)

The Code Text Editor provides automatic text markers that cause parts of the Perl code to be distinctively
highlighted to the user for the following code elements:

e Perl subroutines

¢ DCA API asynchronous calls

e DCA API termination calls

e DCA API call

10.4 Flow Control Chart

e The Toolbox commands are used to add symbols and connections to the Flow Control Chart area to
illustrate the flow of control between executions blocks and asynchronous calls for the application.

e The symbol can be added to the Flow Control Chart area or adjusted by dragging the symbol to the
desired location. The connection is maintained during dragging.

e The Render Chart action command renders a new Flow Control Chart from the application code in
the Code Text Editor.

e The Save action command saves the chart data along with the application code.

e There is a pan and zoom control panel above the Flow Control Chart for adjusting the location and
scale of the visible chart boundaries to reveal hidden chart content.

e The symbol selected in the Flow Control Chart area becomes highlighted. Selecting the symbol in the
Flow Control Chart area causes the Code Text Editor to select the code associated with the symbol
and to scroll the selected code into view.

e The start of the connection line is marked by the circle representing an exit from a previous symbol,
and the other end of the line marks an entry to a symbol.

DCA Programmer’s Guide, E89013 Revision 01, January 2018 73

CONFIDENTIAL — ORACLE RESTRICTED

10.4.1 Start Symbol

Start symbol is automatically created by the Render Chart action command. Start symbols are
connected to the Execution Block symbols for the request and answer subroutines specified on the
Application General Options screen (Section 9.2.3).

If the subroutine names are not yet configured, or the configured names do not match any
subroutines in the code, Start symbols are rendered in the chart with no connections and are marked
with validation errors.

Selecting the Start symbol causes the Code Text Editor to scroll to the first line of code for the
connected Execution block.

10.4.2 Execution Block Symbol

The name of an Execution Block symbol is also the name of the subroutine.

An Execution Block has one entry connection, which can proceed from one of the following symbols:
Start, execution Block, or Async Call.

An Execution Block has one or more exit connections to any of the following symbols: Execution
Block, Termination, or Async Call.

Selecting the Execution Block symbol causes the Code Text Editor to select the code for the
associated subroutine and scroll it into view.

10.4.3 Asynchronous Call Symbol

The Asynchronous Call symbol displays the name of the asynchronous function that is invoked.
An Async Call symbol always has an entry connection from an Execution Block Symbol.
Note: A symbol inserted by the user with no connections is ignored.

An Async Call symbol always has an exit connection to an Execution Block that has a name, which
matches the callback subroutine name input parameter to the asynchronous call.

Selecting the Async Call symbol displays the asynchronous function call statement in the Code Text
Editor.

10.4.4 Termination Symbol

The Termination symbol displays a final action name that corresponds to an occurrence of a
termination call in the Execution Block connected to the Termination symbol.

The allowed final action names are Forward, Drop, Answer.
A Termination symbol can only have an entry connection and no exit connection.
A Termination symbol can only be connected to the exit of an Execution Block symbol.

Selecting the Termination symbol displays the code statement for the final action in the Code Text
Editor.

10.4.5 Delete symbol from the Flow Control Chart

Right-clicking the symbol or connection in the Flow Control Chart area causes a hidden menu to be
displayed.

The menu associated with every chart symbol and connection displays the following commands:
o Delete (selecting this command deletes the symbol or connection from the Flow Control Chart)

e Delete is enabled only for symbols/connections created using the Toolbox commands and that
are not yet associated to the code.

DCA Programmer’s Guide, E89013 Revision 01, January 2018 74

CONFIDENTIAL — ORACLE RESTRICTED

Note: Symbols and connections created using the Render Chart cannot be deleted because they are

associated with code in the Code Text Editor. The associated code must be deleted first, and
then Render Chart can update the Flow Control Chart to reflect the deletion.

¢ Rename (selecting this command enables renaming the symbol).

Note: Rename displays only for the exec, async, and termination blocks and not for connections.

10.4.6 Flow Control Chart Validation

The Flow Control Chart validation (validation errors show up and/or clear) is triggered by the
following events:

e Anew chart is rendered by the Render Chart command
e Right as a change is made

The Flow Control Chart Validation finds errors in the structure of the application code before the
Compile action command is clicked.

An error icon is displayed beside each chart symbol name that has a validation error.
Hovering over the error icon of a symbol displays the validation error message for the symbol.
Existing validation errors are cleared at the start of validation.

The Flow Control Chart validates each Start symbol is connected to a single Execution Block.
Otherwise, the Start symbol has no Execution Block connection error displays.

The Flow Control Chart validates the Execution Block connected to a Start symbol has an exit
connection that directly or indirectly leads to a Termination symbol. Otherwise, the Starting
Execution Block exit connection does not lead to a direct or indirect Termination error displays.

The Flow Control Chart validates each Async Call connects to a post-processing Execution Block.
Otherwise, the Async Call has no connection to a post-processing Execution Block error
displays.

Note: This error message occurs when the Async Call statement in the code references a post-
processing subroutine that does not exist.

10.4.7 Command Output Area

The output messages from the action commands are displayed in the Command Output text area.

When the Command Output text area gets full, the oldest text lines are removed to make room for the
new lines.

The Command Output text area is able to display a maximum of 500 lines of text.

The Save, Check Syntax, and Compile action commands produce log events in the system log where
DSR stores all GUI log events.

Each log event includes the user, app ID, app name, app version, and action command name.

10.4.8 Render Chart

The Render Chart action command analyzes the current application code and create a new Flow
Control Chart to depict the code.

The command output of the Render Chart action command reads “Rendering Chart...” and “Render
Chart done”.

The Render Chart action command renders chart symbols on detecting subroutines, asynchronous
calls and termination calls in the application code.

The detection of a subroutine declaration works on the following coding convention:

The declaration of a subroutine name and opening brace appear on the same line. The closing brace for
the subroutine appears alone on a separate line. Example:

DCA Programmer’s Guide, E89013 Revision 01, January 2018 75

CONFIDENTIAL — ORACLE RESTRICTED

Perl language example
sub process request ({

Code statements here
}

e The detection of an asynchronous call declaration works on the following coding convention:

For an asynchronous call statement the logical database name input argument must be passed as a
literal string (quoted text) — not a variable or expression.

e For an asynchronous call statement, the callback input argument is the name of the post-processing
subroutine where execution continues after the asynchronous call. The callback input argument must
be passed as a literal string (quoted text) — not as a subroutine reference. For example:

Perl language example
sub process request ({
Asynchronous call
dca::sbr::sbriInstance ("sbrDB")->read (
$subscription type, # key type
$subscription key, # key value

"read result" # callback to process result

}

10.4.9 Save

e The Save action command is enabled in Edit Mode if the current known Application State is
Development or Trial.

e The Save action command saves the application code and Flow Control Chart to the system
database.

e The command output of the Save action command reads “Saving...” and “Save done”.

10.4.10 Check Syntax

e The Check Syntax action command makes the Perl interpreter check the syntax of the last saved
code and report any syntax errors.

e The Check Syntax action command is enabled in Edit Mode if the current known Application State is
Development or Trial and the application code and chart have been saved.

e Click Check Syntax to retrieve the latest application data and compare current application data.

10.4.11 Compile

e The Compile action command compiles the application code and is enabled in Edit mode if the
current known Application State is Trial, and this action command has not been run since the last
Check Syntax Action command was executed.

e The command output of the Compile action command reads “Compiling...” and “Compile done”.

10.5 Race Conditions

e If multiple users are changing the application version code/flowchart simultaneously, only the first one
is able to submit the changes (commands Save, Check Syntax, Compile). If the rest are trying to

DCA Programmer’s Guide, E89013 Revision 01, January 2018 76

CONFIDENTIAL — ORACLE RESTRICTED

submit the changes, the flowchart checksum validation fails and they would not be able to overwrite
the code/flowchart in the database.

If the Save action command is clicked while the current application state is Development or Trial, and
the last-saved checksum has changed, saving is aborted and the error message displays:

"Action command 'Check Save' aborted. A newer version of the application
code and Flow Control Chart has been saved in the system.

Select OK to overwrite the latest saved data.

Select Cancel to close without overwriting."

If the user confirms, overwrite the latest version of the code and Flow Control chart with the current
application data.

If the Check Syntax action command is clicked while the current application state is Development or
Trial, and the last-saved checksum has changed, checking syntax is aborted and the error message
displays:

"Action command 'Check Syntax' aborted. A newer version of the
application code and Flow Control Chart has been saved in the system.
Select OK to overwrite the latest saved data.

Select Cancel to close without overwriting."

If the user confirms, overwrite the latest version of the code and Flow Control chart with the current
application data.

If the Compile action command is clicked while the current application state is Trial, and the last-
saved checksum has changed, compiling is aborted and the error message displays:
“Action command ‘compile’ aborted. A more recent version of the code and

Flow Control Chart exists. Do you want to overwrite the current code and
Flow Control chart with the latest data?”

If the user confirms, overwrite the latest version of the code and Flow Control chart with the current
application data.

If multiple users are working with the application version, and there is an attempt to submit the
code/flowchart changes (commands Save, Check Syntax, Compile) while the application state has
changed and now is inappropriate for the code/flowchart update, the error occurs. (The web
application running in the browser polls the web server every 10 seconds to get the latest application
data and check for an application state change. The enabled/disabled state of Save/Check
Syntax/Compile is only accurate within a 10 seconds time window).

If Save is clicked while the current application state is Production or Archived, saving is aborted and
the error message displays:

"Action command 'Save' aborted. The Application Version Status has
changed from '<state>' to '<state>' which is invalid for the action
command."

A confirmation dialog box displays with Ok and Cancel and the following text:

"The Application Version Status has changed from '<state>' to '<state>'.

You will now be switched to View Mode and will not be able to save
changes.

Select OK to load and view the latest saved data.

Select Cancel to continue viewing the current data."

If the user confirms, the current code and Flow Control chart is overwritten with the latest data.

DCA Programmer’s Guide, E89013 Revision 01, January 2018 77

CONFIDENTIAL — ORACLE RESTRICTED

e |f the Check Syntax action command is clicked while the current application state is Production or
Archived, checking syntax is aborted and the error message displays:

"Action command 'Check Syntax' aborted. The Application Version Status
has changed from '<state>' to '<state>' which is invalid for the action
command. "

A confirmation dialog box displays OK and Cancel and the following text:
"The Application Version Status has changed from '<state>' to '<state>'.

You will now be switched to View Mode and will not be able to save
changes.

Select OK to load and view the latest saved data.
Select Cancel to continue viewing the current data."
If the user confirms, overwrite the current code and Flow Control chart with the latest data.

o |f the Compile action command is clicked while the current application state is Development,
Production or Archived, compiling is aborted and the error message displays:

"Action command 'Compile' aborted. The Application Version Status has
changed from '<state>' to '<state>' which is invalid for the action
command."

11. APIs

This chapter documents the various APIs available to a DCA programmer.

11.1 The EDL API

11.1.1 API to Manipulate the Diameter Header

Purpose: Retrieve the Diameter message object needed for subsequent operations on the Diameter
message header and body.

Prototype:
my Smsg = diameter::Param::message (Sparam) ;

where Sparam is a default parameter provided by all the event handlers and may be retrieved with:
my $param = shift;

Purpose: Read the Diameter version number in the Diameter header.

Prototype:
my Sver = diameter::Message::version (Smsqg);

where $ver is undef in case of failure (for example, wrong object passed in $msg) or the Diameter
version number if success.

Purpose: Set the Diameter version number in the Diameter header.
Prototype:
Serr = diameter::Message::setVersion (Smsg, S$ver);

where $Serr is undef in case of failure (for example, wrong object passed in $Smsg) or a hon-zero value
in case of success.

Purpose: Return the length (as number of bytes) of the Diameter message.

DCA Programmer’s Guide, E89013 Revision 01, January 2018 78

CONFIDENTIAL — ORACLE RESTRICTED

Prototype:
my $len = diameter::Message::messagelLength (Smsqg) ;

where $1len is undef in case of failure (for example, wrong object passed in $msg) or the length of the
Diameter message if success

Purpose: Read the Command Flags of the Diameter message.
Prototype:
my $cmdFlags = diameter::Message::commandFlags (Smsg) ;

where $cmdFlags is undef in case of failure (for example, wrong object passed in $Smsg) or the
Command Flags if success.

Purpose: Read the Request flag of the Diameter message.
Prototype:
my $r = diameter::Message::isRequest ($Smsqg) ;

where $r is 1 if the Request flag is set, 0 if the Request flag is not set, or undef if error (for example,
wrong object passed in $msg).

Purpose: Read the Diameter Proxiable flag in the Diameter header.
Prototype:
my $p = diameter::Message::isProxiable (Smsqg);

where $p is 1 if the Proxiable flag is set, O if the Proxiable flag is not set or undef if error (for example,
wrong object passed in $msg).

Purpose: Set (set to 1) the Diameter Proxiable flag in the Diameter header.
Prototype:
Serr = diameter::Message::setProxiable (Smsq);
where Serr is undef if error (for example, wrong object passed in Smsg) or a non-zero value if success.
Purpose: Clear (set to 0) the Diameter Proxiable flag in the Diameter header.
Prototype:
Serr = diameter::Message::clearProxiable (Smsqg) ;
where Serr is undef if error (for example, wrong object passed in Smsg) or a non-zero value if success.
Purpose: Read the Diameter Error flag in the Diameter header.
Prototype:
my Se = diameter::Message::isError (Smsg)

where $e is 1 if the Error flag is set, O if the Error flag is not set or undef if error (for example, wrong
object passed in $msq).

Purpose: Set (set to 1) the Diameter Error flag in the Diameter header.
Prototype:
Serr = diameter::Message::setError (Smsqg);
where Serr is undef if error (for example, wrong object passed in Smsg) or a non-zero value if success.

Purpose: Clear (set to 0) the Diameter Error flag in the Diameter header.

DCA Programmer’s Guide, E89013 Revision 01, January 2018 79

CONFIDENTIAL — ORACLE RESTRICTED

Prototype:
Serr = diameter::Message::clearError (Smsq) ;
where Serr is undef if error (for example, wrong object passed in smsg) or a non-zero value if success.
Purpose: Read the Diameter Retransmission flag in the Diameter header.
Prototype:
my $t = diameter::Message::isRetransmission ($msqg) ;

where $t is 1 if the Retransmission flag is set, 0 if the Retransmission flag is not set or unde £ if error (for
example, wrong object passed in $msg).

Purpose: Set (setto 1) the Diameter Retransmission flag in the Diameter header.
Prototype:

Serr = diameter::Message::setRetransmission ($msqg) ;
where Serr is undef if error (for example, wrong object passed in Smsg) or a non-zero value if success.
Purpose: Clear (set to 0) the Diameter Retransmission flag in the Diameter header.
Prototype:

Serr = diameter::Message::clearRetransmission ($Smsqg) ;
where Serr is undef if error (for example, wrong object passed in Smsg) or a non-zero value if success.
Purpose: Read the Diameter 4" reserved bit of the Command Flags in the Diameter header.
Prototype:

my $r4 = diameter::Message::isReservedBit4 (Smsqg);

where st is 1 if the 4" bit in the Command Flags flag is set, 0 if the bit is not set or undef if error (for
example, wrong object passed in Smsq).

Purpose: Set (set to 1) the Diameter 4™ reserved bit of the Command Flags in the Diameter header.
Prototype:

Serr = diameter::Message::setReservedBit4 (Smsqg);
where Serr is undef if error (for example, wrong object passed in Smsg) or a non-zero value if success.
Purpose: Clear (set to 0) the Diameter 4™ reserved bit of the Command Flags in the Diameter header.
Prototype:

Serr = diameter::Message::clearReservedBit4 (Smsqg) ;
where Serr is undef if error (for example, wrong object passed in Smsg) or a non-zero value if success.

Purpose: Read/Set/Clear the Diameter 5", 6", and 7" reserved bit in the Command Flags in the
Diameter header.

Prototype:

See three examples above where the Bit4 suffix in the function names is accordingly replaced by
Bit5, Bit6, and Bit7, respectively.

Purpose: Read the Diameter Command Code in the Diameter header.
Prototype:

my $cmd = diameter::Message::commandCode ($msg) ;

DCA Programmer’s Guide, E89013 Revision 01, January 2018 80

CONFIDENTIAL — ORACLE RESTRICTED

where $cmd is undef if error (for example, wrong object passed in $msg) or contains the Command
Code if success.

Purpose: Set the Diameter Command Code in the Diameter header.
Prototype:
Serr = diameter::Message: :setCommandCode ($Smsg, S$cmd);
where Serr is undef if error (for example, wrong object passed in Smsg) or a non-zero value if success.
Purpose: Read the Diameter Application-ID in the Diameter header.
Prototype:
my SappId = diameter::Message::applicationId(Smsqg);

where SappId is undef if error (for example, wrong object passed in smsg) or contains the Application-
ID if success.

Purpose: Set the Diameter Application-ID in the Diameter header.
Prototype:
Serr = diameter::Message::setApplicationId(Smsg, SappId);
where Serr is undef if error (for example, wrong object passed in Smsg) or a non-zero value if success.
Purpose: Read the Diameter Hop-by-Hop Identifier in the Diameter header.
Prototype:
my $hbh = diameter::Message::hopByHopId ($msg) ;

where $hbh is undef if error (for example, wrong object passed in $msg) or contains the Hop-by-Hop
Identifier if success.

Purpose: Set the Diameter Hop-by-Hop Identifier in the Diameter header.
Prototype:
Serr = diameter::Message: :setHopByHopId ($Smsg, S$hbh);
where Serr is undef if error (for example, wrong object passed in Smsg) or a non-zero value if success.
Purpose: Read the Diameter End-to-End Identifier in the Diameter header.
Prototype:
my Serr = diameter::Message::endToEndId (Smsqg) ;

where Serr is undef if error (for example, wrong object passed in smsg) or contains the End-to-End
Identifier if success.

Purpose: Set the Diameter End-to-End Identifier in the Diameter header.
Prototype:
Serr = diameter::Message: :setEndToEndId (msg, Sele);

where Serr is undef if error (e.g wrong object passed in $Smsg) or a non-zero value if success.

11.1.2 API to Manipulate the Diameter AVPs

Purpose: Read from a Diameter message the value of an AVP identified by name and instance number.
Prototype:

my $val = diameter::Message::getAvpValue (Smsg, $avp name [, $instance]);

DCA Programmer’s Guide, E89013 Revision 01, January 2018 81

CONFIDENTIAL — ORACLE RESTRICTED

The return values are:

e undefif $Sinstanceis 0.

e undef if there are less instances of the AVPIn the Diameter message than the $instance value or
an AVP with the specified name does not exist in the Diameter message or the AVP name is not
specified in the AVP Dictionary.

e The value of the $instance-th instance of the AVP (starting from 1).
e The value of the first instance of the AVP if Sinstance has been omitted.

e undef if Smsg does not contain a diameter: :Message Of diameter: : GroupedAvp object or the
other parameters (if any) are undef.

Purpose: Add at the end of the Diameter message an AVP identified by name and value.
Prototype:
my Serr = diameter::Message::addAvpValue (Smsg, $avp name, Savp val);
The return values are:
e Non-zero in case of success.
e undef if the AVP name does not exist in the AVP Dictionary.
e undef if the AVP name exists in the AVP Dictionary.
e undef if the AVP value cannot be converted to the AVP data type specified in the AVP Dictionary.

e undef if Smsg does not contain a diameter: :Message Of diameter: : GroupedAvp object or the
other parameters (if any) are undef.

Purpose: Set the value of an AVP in a Diameter message.
Prototype:

my Serr = diameter::Message::setAvpValue (Smsg, $avp name, Savp val [,
Sinstancel]) ;

If Sinstance has been omitted, the first instance of the AVP is set.
The return values are:

e Non-zero in case of success.

e undef if the AVP name does not exist in the AVP Dictionary.

e undef if the AVP name exists in the AVP Dictionary.

e undef if the AVP name is valid but no such AVP exists in the Diameter message.
e undef if $instance is 0.

e undef if the AVP exists in the Diameter message but $instance value is greater than the number
of AVP instances in the Diameter message.

e undef if the AVP value cannot be converted to the AVP data type specified in the AVP Dictionary.

e undef if Smsg does not contain a diameter: :Message Of diameter: : GroupedAvp object or the
other parameters (if any) are undef.

Purpose: Set the value of an existing AVP in a Diameter message or add that AVP at the end of the
Diameter message if the message already contains exactly Sinstance — 1 AVPs.

Prototype:

my Serr = diameter::Message::setAddAvpValue ($msg, $Savp name, Savp val [,
$instance]) ;

If Sinstance has been omitted, it defaults to 1.

DCA Programmer’s Guide, E89013 Revision 01, January 2018 82

CONFIDENTIAL — ORACLE RESTRICTED

The return values are:

e 1in case an AVP with the specified instance number exists and its value has been successfully set.

e 2 if the Diameter messages contains exactly Sinstance — 1 AVPs of the specified type, in which
case the sinstance’ s AVP is added to the end of the message.

e undef if the Diameter messages contains strictly less than $instance — 1 AVPs of the specified
type.
e undef if the AVP name does not exist in the AVP Dictionary.

e undef if the AVP name exists in the AVP Dictionary.

e undef if the AVP name is valid but the Diameter messages already contains $instance or more
AVPs of the specified type.

e undef if $instance is 0.
e undef if the AVP value cannot be converted to the AVP data type specified in the AVP Dictionary.

e undef if Smsg does not contain a diameter: :Message Or diameter: : GroupedAvp object or the
other parameters (if any) are undef.

Purpose: Read the value of an AVP’s flag octet.
Prototype:

my $flags = diameter::Message::getAvpFlags(Smsg, S$avp name [, Sinstance]);
The return values are:

e The value of flags octet of the Sinstance-th instance of the AVP (starting from 1).

e The value of the first instance of the AVP if $instance has been omitted.

e undef if there are less instances of the AVP in the Diameter message than the $instance value.
e undef if $instance is 0.

e undef if an AVP with the specified name does not exist in the Diameter message.

e undef if the AVP name is not specified in the AVP Dictionary.

e undef if Smsg does not contain a diameter: :Message Of diameter: : GroupedAvp object or the
other parameters (if any) are undef.

Purpose: Set the value of an AVP’s flag octet.
Prototype:

my Serr = diameter::Message::setAvpFlags ($msg, $Savp name, Smask [,
Sinstance]) ;

A 1 bitin smask indicates a bit to set, while a 0 bit in Smask preserves the original bit value.
If Sinstance has been omitted, the flags of the first instance of the AVP is set.

The return values are:

e Non-zero in case of success.

e undef if the AVP name does not exist in the AVP Dictionary.

e undef if the AVP name is valid but no such AVP exists in the Diameter message.

e undef if the AVP exists in the Diameter message but $instance value is greater than the number
of AVP instances in the Diameter message.

e undef if $instance is 0.

e undef if Smsg does not contain a diameter: :Message Of diameter: : GroupedAvp object or the
other parameters (if any) are undef.

DCA Programmer’s Guide, E89013 Revision 01, January 2018 83

CONFIDENTIAL — ORACLE RESTRICTED

Note: The V bit preserves the original value regardless the $mask value.
Purpose: Clear specific bits in an AVP’s flag.
Prototype:

my Serr = diameter::Message::clearAvpFlags (Smsg, Savp name, S$mask [,
$instance]) ;

A 1 bitin smask indicates a bit to clear, while a 0 bit in Smask preserves the original bit value.
If Sinstance has been omitted, the flags first instance of the AVP is cleared.
The return values are:

e Non-zero in case of success.
e undef if the AVP name does not exist in the AVP Dictionary.
e undef if the AVP name is valid but no such AVP exists in the Diameter message.

e undef if the AVP exists in the Diameter message but $instance value is greater than the number
of AVP instances in the Diameter message.

e undef if $instance is 0.

e undef if Smsg does not contain a diameter: :Message Or diameter: : GroupedAvp object or the
other parameters (if any) are undef.

Note: The V bit preserves the original value regardless the Smask value.
Purpose: Delete an AVP identified by nhame, from a Diameter message.

Prototype:

my Serr = diameter::Message::delAvp (Smsg, $avp name [, $instance]);
If sinstance has been omitted, the first instance of the AVP is deleted.
The return values are:

e 1in case AVP is deleted.
e 0if AVP does not exist in message.
e undef if the AVP name does not exist in the AVP Dictionary.

e undef if the AVP exists in the Diameter message but $instance value is greater than the number
of AVP instances in the Diameter message.

e undef if $instance is 0.

e undef if Smsg does not contain a diameter: :Message Of diameter: : GroupedAvp object or the
other parameters (if any) are undef.

Purpose: Delete all the instances of an AVP from a Diameter message.
Prototype:

my Serr = diameter::Message::delAvpAll ($msg, Savp name);
The return values are:

e 1lincase AVP is deleted.
e 0if AVP does not exist in message.
e undef if the AVP name does not exist in the AVP Dictionary.

e undef if Smsg does not contain a diameter: :Message Of diameter: : GroupedAvp object or the
other parameters (if any) are undef.

Note: The AVPs on the same nesting level are deleted, meaning, the un-grouped AVPs in a Diameter
message, if the function is called with a Diameter message parameter or the AVPs in a specific

DCA Programmer’s Guide, E89013 Revision 01, January 2018 84

CONFIDENTIAL — ORACLE RESTRICTED

grouped AVP that are not deeper nested in a further grouped AVP, if the function is called with a
Grouped AVP parameter.

Purpose: Return the number of instances of an AVP from a Diameter message.
Prototype:

my $Scnt = diameter::Message::countAvp (Smsg, $avp name);
The return values are:

e 0if the AVP does not exist in the Diameter message.

e Astrictly positive number indicating the number of occurrences of the respective AVP in the Diameter
message.

e undef if the AVP name does not exist in the AVP Dictionary.

e undef if Smsg does not contain a diameter: :Message Of diameter: : GroupedAvp object or the
other parameters (if any) are undef.

Note: The AVPs on the same nesting level are counted, meaning, the un-grouped AVPs in a Diameter
message, if the function is called with a Diameter message parameter or the AVPs in a specific
grouped AVP that are not deeper nested in a further grouped AVP, if the function is called with a
Grouped AVP parameter.

Purpose: Check whether a specific AVP (instance) exists in a Diameter message.
Prototype:
my Sexists = diameter::Message::avpExists($msg, $Savp name [, $instance]);
The return values are:
e Trueif Sinstance is omitted and at least one AVP with the specified name exists.
e Trueif Sinstance is specified and an AVP with the specified name and instance number exists.

¢ False if no AVP with the specified name exists in the Diameter message.

e Falseif Sinstance is specified, at least one AVP with the specified name exists, but the number of
instances of the respective AVP is strictly less than the specified sinstance.

e undef if the AVP name does not exist in the AVP Dictionary.

e undef if Smsg does not contain a diameter: :Message Of diameter: : GroupedAvp object or the
other parameters (if any) are undef.

Note: The AVPs on the same nesting level are checked, meaning, the un-grouped AVPs in a Diameter
message, if the function is called with a Diameter message parameter or the AVPs in a specific
grouped AVP that are not deeper nested in a further grouped AVP, if the function is called with a
Grouped AVP parameter.

Purpose: Return the length of the payload of an AVP from a Diameter message.
Prototype:
my $len = diameter::Message::avpDatalength(Smsg, S$avp name [, Sinstance]);
If Sinstance has been omitted, the length of the first instance of the AVP is returned.
The return values are:

e undef if no AVP with that name exists in the Diameter message.

undef if Sinstance is specified but less than $instance AVPs exists in the Diameter message.

A strictly positive number or 0, indicating the length of the payload of the indicated AVP instance.

undef if the AVP name does not exist in the AVP Dictionary.

DCA Programmer’s Guide, E89013 Revision 01, January 2018 85

CONFIDENTIAL — ORACLE RESTRICTED

e undef if Smsg does not contain a diameter: :Message Of diameter: : GroupedAvp object or the
other parameters (if any) are undef.

11.1.3 API to Manipulate the Diameter Grouped AVPs

All the API functions introduced in the previous section, work on grouped AVPs as well. For instance, the
value of the Subscription-Id grouped AVP may be read with:

my $gVal = diameter::Message::getAvpValue (Smsg, “Subscription-Id”);
and the Subscription-Id grouped AVP may be added to a Diameter message with:
my Serr = diameter::Message::addAvpValue (Smsg, “Subscription-Id”, $gvVal);

Note that in this case, $gval is an OctetString that contains both the Subscription-Id-Type and the
Subscription-ld-Data AVPs.

This approach is particularly handy when the Subscriber-1d grouped AVP needs to be copied from one
Diameter message to another, without having to look into the individual AVPs included in it.

However, if accessing the individual AVPs included into a grouped AVP is desired, then the
getGroupedAvp and addGroupedAvp API calls provide the necessary support:

Purpose: Access a Grouped AVP in a Diameter message.
Prototype:

my SgAvp = diameter::Message::getGroupedAvp ($msg, $avp name [,
Sinstancel]) ;

The return values are:

e undef if the AVP name does not exist in the AVP dictionary.
e undef if AVP name exists in the AVP dictionary but it is not defined as a Grouped AVP.

e undef if the AVP name is valid but the Diameter message does not contain a Grouped AVP with that
name.

e undef if the AVP name is valid but the Diameter message contains less Grouped AVPs with that
name than specified in $instance.

e Adiameter: :GroupedAvp Grouped AVP object that corresponds to the respective instance of the
Grouped AVP (or to the first instance if Sinstance is omitted).

The $gAvp diameter: :Grouped AVP object can be used to manipulate the AVPs that it contains using
any of the API functions introduced so far:

$result = diameter::GroupedAvp::<API function> ($gAVP,
<API function params>);

where the $gAVP object of type diameter: : GroupedAvp replaces the smsg object of type
Sdiameter:Message and Sresult represents the return parameter of the respective API function..

Note: getGroupedAvp works recursively to get a grouped AVP (Snested_gAVP) contained in another
grouped AVP ($gAvp):

my S$nested gAvp = diameter::Message::getGroupedAvp (SgAvp,
$avp name) ;

where $gAvp is a diameter::GroupedAvp object
Purpose: Add a Grouped AVP to the end of a Diameter message.
Prototype:
my S$gAvp = diameter::Message::addGroupedAvp ($msg, $avp name);

DCA Programmer’s Guide, E89013 Revision 01, January 2018 86

CONFIDENTIAL — ORACLE RESTRICTED

where $gAvp is a diameter: : GroupedAvp object.
The return values are:
e undef if the AVP name does not exist in the AVP dictionary.

e undef if AVP name exists in the AVP dictionary but it is not defined as a Grouped AVP.

A diameter: :GroupedAvp Grouped AVP object can be further used to manipulate the AVPs that it
contains:

my $subscription id = diameter::Message::addGroupedAvp ($msg,
“Subscription-Id”);

diameter:GroupedAvp: :addAvpValue ($subscription id, “Subscription-Id-Type”,
$avp_val) ;

diameter::GroupedAvp: :addAvpValue ($subscription id, “Subscription-Id-
Data”, S$avp val);

Note: addGroupedAvp works recursively to add a grouped AVP ($Snested_gAVP) within another
grouped AVP (SgAvp):

my $nested gAvp = diameter::Message::addGroupedAvp (SgAvVp,
$avp_name) ;

where $gAvp is a diameter::GroupedAvp object.
11.2 Diameter Transaction Stateful APIs

11.2.1 Internal Variables

This APl is primary intended to enable DCA to interact with Mediation Rules through Internal Variables.
Internal Variables have been introduced by the Mediation feature and can be configured from Main
Menu: Diameter > Mediation > Internal Variables. Internal Variables are persistent throughout the
lifetime of a Diameter transaction.

Purpose: Access Internal Variables.
Prototype:
my $iv_ref = new diameter::InternalVarDef (“<IV_ Name>");
my $internalVarMap = diameter::Param::internalVarMap (Sparam) ;

where $param is the opaque parameter passed to every event handler and <IV_Name> is the name
assigned to the Internal Variable in Main Menu: Diameter > Mediation > Internal Variables.

Note: The Internal Variables are configurable at the B level, therefore the <IV_Name> must be
configured on all the sites. Otherwise, the initialization fails when invoked on those DA-MP
located in sites where <IV_Name> does not exist.

Purpose: Set and Get Internal Variables.

Prototype:
diameter::InternalVarMap::set ($internalVarMap, $iv_ref, $val);
$val = diameter::InternalVarMap::get($internalVarMap, $iv_ref);

Enables setting values to and retrieving values from an internal variable, where $iv ref and
SinternalVarMap are initialized as shown before.

DCA Programmer’s Guide, E89013 Revision 01, January 2018 87

CONFIDENTIAL — ORACLE RESTRICTED

11.2.2 Diameter Transaction Context Variables

The Diameter transaction context variables offer Diameter transaction persistent storage, similar to
Internal Variables. Unlike Internal Variables, Diameter transaction context variables are not configurable
via the GUI (which provides for a much simpler API) and cannot be shared with other features.

Purpose: Store Diameter transaction context variables
Prototype:
Serr = dca::transctx::store(“<var_ id>", Svar)

The function returns undef if Svar is undef or any error occurs (for example, Svar is a Perl hash or
array that cannot be successfully encoded into JSON or DSR cannot allocate more memory space for the
Diameter context variable) and 1 if the operation is successful.

Purpose: Retrieve Diameter transaction context variables
Prototype:
$var = dca::transctx::fetch(“<var id>");

undef is returned in case of failure (for example, <var id> is not found because no variable with that
name has been previously stored).

11.3 Read DCA Configuration Data

This API enables DCA to access its configuration data, which was specified and provisioned as described
in Sections 3.3.3 and 3.3.4.

When the Perl script is generated, DCA configuration data is converted into a Perl variable. The Perl
variable name is $dca: :appConfig and is a hash (one key for each table) of arrays (one index for each
record) of hashes (one key for each field in the table).

Read-only access on DCA configuration data is enforced using the Const::Fast CPAN module and
applies to the data included in the $dca: : appConfig definition (which is automatically generated from
DCA configuration data).

Note that there are semantical differences from one Const::Fast version to another, which affect the way
$dca: :appConfig can be subsequently manipulated in the Perl script with regard to adding new
records to $dca: :appConfig or accessing records that are not defined in $dca: :appConfig.

For instance, in version 0.006, which is the one currently used, an attempt to read or assign a value to an
inexistent table (outermost hash key) $dca: : appConfig results in a runtime error.

On the other hand, assigning values to inexistent indexes (table records) and/or inexistent fields
(innermost hash key) succeeds and can be subsequently successful read, while reading from inexistent
indexes and/or inexistent fields return unde f. These indexes and fields are not written back to DCA
configuration data.

Purpose: Read DCA configuration data.

Prototype:
$dca::appConfig{“<config table name>”"}[<row index>]{“<field name>"}

for non-“single row” configuration tables.
$dca::appConfig{“<config table name>"}{“<field name>"}

for “single row” configuration tables.

Example: Assuming DCA defines a configuration table called "MyTable” with two fields “FieldA” and
“FieldB” and provisions a few rows, it is possible to retrieve the NOAM and SOAM
provisioned data from DCA in the following way:

DCA Programmer’s Guide, E89013 Revision 01, January 2018 88

CONFIDENTIAL — ORACLE RESTRICTED

for $i (0 .. S$#dca::appConfig{“MyTable”}) {
dca::application::logInfo($dca: :appConfig{“MyTable”}[$i]{“Fieldl”});
dca::application::logInfo ($dca::appConfig{“MyTable”} [$i]{“Field2”});
}

11.4 Routing API

The routing API enables DCA to perform some basic routing functions.

The dca::action::forward(),dca::action: :answer ($Sans) and dca: :action: :drop () API
functions terminate the execution of the event handler. This means that the statements that follow them
in the Perl code are not executed. This also has a side effect on the U-SBR queries initiated before
invoking any of dca: :action::forward(), dca::action: :answer ($ans) and
dca::action::drop () because, as mentioned in Section 6.3.6.2, the U-SBR queries are actually sent
after the execution of the event handler completes: the side effect is the U-SBR queries are also not
executed (that is, sent to the U-SBR).

Besides dca::action::forward(), dca::action::answer (Sans) and dca::action: :drop(),
an event handler’s execution flow also terminates (as any other Perl subroutine) when a return
statement is encountered or when the enclosing curly bracket is reached. In this case, the implicit routing
decision that the DCA framework takes depends on the Perl subroutine return value:

e If the return value is greater or equal to 0, then the Diameter message is forwarded.
o |If the return value is negative, then the runtime error behavior (Section 3.3.1) is executed.
Purpose: Complete the processing and drop the message.

Prototype:
dca::action::drop();
Note: Invoking dca::action::drop () causes the event handler to immediately terminate execution.
Purpose: Build a Diameter Answer.
Prototype:

$ans = new dca::application::answer (<error code>, <error text>,
<vendor_ id>);

The function returns undef in case of failure or a diameter: :Message object.

When receiving a Diameter request or answer this API function enables DCA to construct a Diameter
answer and either return it to the originator of the corresponding Diameter request or, respectively,
substitute the original Diameter answer message.

The EDL API (see Section 11.1) may be used to further process the sans Diameter answer (for example,
add more AVPs).

Purpose: Send a Diameter Answer Created by DCA.
Prototype:
dca::action: :answer ($ans);

Note: Invoking dca::action::answer (Sans) causes the event handler to immediately terminate
execution.

Purpose: Complete the processing and pass the message.
Prototype:

dca::action::forward() ;

DCA Programmer’s Guide, E89013 Revision 01, January 2018 89

CONFIDENTIAL — ORACLE RESTRICTED

Enables DCA to pass a Diameter message to the Diameter Routing Layer for routing.

Note: Invoking dca::action::forward () causes the event handler to immediately terminate
execution.

Purpose: Specify an ART based on which a Diameter request is routed.
Prototype:
$err = dca::route::setART (<ART table name>);
The function returns unde £ if the name of the ART does not exist (failure) or 1 if success.

Before invoking dca: :action::forward () on a Diameter request, this routing API function enables
DCA to specify which ART to be used for routing the respective Diameter request.

Note: The ART is configurable at the B level; therefore, the <ART table name> must be configured
on all the sites. Otherwise, the API function fails when invoked on those DA-MP located in sites
where <ART table name> does not exist.

Purpose: Specify a PRT based on which a Diameter request is routed.
Prototype:
$err = dca::route::setPRT (<PRT_table name>);
The function returns undef if the name of the PRT does not exist (failure) or 1 if success.

Before invoking dca: :action: : forward () on a Diameter request, this routing API function enables
DCA to specify which PRT to be used for routing the respective Diameter request.

Note: The PRT is configurable at the B level, therefore the <PRT table name> must be configured on
all the sites. Otherwise, the API function fails when invoked on those DA-MP located in sites
where <PRT table name> does not exist.

11.5 Debugging API

The Debugging API allows tracking the execution of the event handlers by supporting the equivalent of
printf, log, echo, etc., functions in other programming/scripting languages.

The messages are logged in the dsr.DCA trace file (use tr.tail dsr.DCA). The following masks may be
applied using the tr.set command to filter the ERROR, INFO, and WARNING error messages:
0x00000001 (error), 0x00000002 (info) and respectively 0x00000004 (warning).

All the traces generated by DCA using the API calls is prefixed with the DCA name (to allow for further
filtering, for example, using the grep utility).

The log[Info|Warn|Error] API functions also generate an IDIH trace (see Section 12).

Note, however, that in a production network DSR logs only the vital traces are therefore the main
debugging tool for DCAs in production networks is the IDIH feature.

Purpose: Retrieve the application name.
Prototype:
Sappname = dca::application::getAppName () ;
Purpose: Retrieve the version name
Prototype:
Svername = dca::application::getVersionName () ;

Note: Besides debugging, another possible use case for reading the version name is including it in the
DCA state stored on the U-SBR. This supports backward compatibility in case DCA frequently
changes the format of DCA across DCA versions.

DCA Programmer’s Guide, E89013 Revision 01, January 2018 90

CONFIDENTIAL — ORACLE RESTRICTED

Purpose: Retrieve the current state.
Prototype:
Sverstate = dca::application::getState();

Note: The states returned can be either Trial or Production, since these are the only states when DCA
is executed.

Purpose: Generate a trace containing user-defined messages and having a severity of INFO.
Prototype:

dca::application::logInfo (<message>) ;
The user-defined messages is logged into dsr.DCA (tr.tail dsr.DCA).
Purpose: Generate a trace containing user-defined messages and having a severity of WARNING.
Prototype:

dca::application::logWarn (<message>) ;
Purpose: Generate a trace containing user-defined messages and having a severity of ERROR
Prototype:

dca::application::logErr (<message>) ;

11.6 Custom MEAL API

Once the Custom MEAL objects are differentiated from the Main Menu: DCA Framework > <DCA
Name> > Custom MEALS screen (see Section 9.2.2), they can be initialized and used from DCA.

11.6.1 Counter Template API

Purpose: DCA can bind to a Scalar Counter Custom MEAL by referring to it by the Custom MEAL
configured name.

Prototype:
my $all Cnt = new dca::meal::counter (“MyCnt”);

where “MyCnt” is the name specified when differentiating a Custom MEAL template of type Counter
and measurement type Scalar.

The API call returns a valid Custom MEAL object in case of success. The Custom MEAL object may be
used in subsequent API calls to perform specific operations on the Scalar Counter.

In case of failure, undef is returned.
Possible failure cases are:

¢ No Custom MEAL with the specified name is currently defined.

e A Custom MEAL with that name exists, but either the differentiation process is not yet completed, or
the un-differentiation process was initiated.

e A Custom MEAL with that name exists, but it is not a Scalar Counter.

Note: As a matter of best practice, the initialization of the Custom MEAL objects is performed in the
main body of the Perl script, which is executed once right after a successful compilation (rather
than in an event handler):

Die “Custom MEAL differentiation failure”

unless $obj = new dca::meal::<TemplateType> (“MyCustomMeal") ;

DCA Programmer’s Guide, E89013 Revision 01, January 2018 91

CONFIDENTIAL — ORACLE RESTRICTED

This ensures a compilation error is triggered if the binding process has failed, for instance because there
is a name mismatch between the Perl script and the differentiation GUI screen. Using an undefined $ob]
later in the event handlers triggers run-time errors.

Purpose: DCA can peg a Scalar Counter Custom MEAL.
Prototype:
Serr = $all Cnt->peg();
where $all Cnt is a valid Scalar Counter Custom MEAL object.
The API call returns 1 if success and undef if the operation on the underlying Comcol object has failed.

Purpose: DCA can bind to an Arrayed Counter Custom MEAL by referring to it by the Custom MEAL
configured name.

Prototype:
my S$per Cnt = new dca::meal::arrayedCounter (“MyArrayedCnt");

where “MyArrayedCnt” is the name specified when differentiating a Custom MEAL template of type
Counter and measurement type Arrayed.

The API call returns a valid Custom MEAL object in case of success. The Custom MEAL object may be
used in subsequent API calls to perform specific operations on the Arrayed Counter.

In case of failure, undef is returned.
Possible failure cases are:

¢ No Custom MEAL with the specified name is currently defined.

e A Custom MEAL with that name exists, but either the differentiation process is not yet completed, or
the un-differentiation process was initiated.

e A Custom MEAL with that name exists, but it is not an Arrayed Counter.
Purpose: DCA can peg a specific index of an Arrayed Counter Custom MEAL.

Prototype:
Serr = S$per Cnt->peg($index);

where $per Cnt is a valid Arrayed Counter Custom MEAL object and $index is the index to be
pegged.

The API call returns 1 if success and undef if the either operation on the underlying Comcol object has
failed or the index value is negative.

11.6.2 Rate Template

Purpose: DCA can bind to a Scalar Rate Custom MEAL by referring to it by the Custom MEAL
configured name.

Prototype:
my $all Rate = new dca::meal::rate(“MyRate");

where “MyRate” is the name specified when differentiating a Custom MEAL template of type Rate and
measurement type Scalar.

The API call returns a valid Custom MEAL object in case of success. The Custom MEAL object may be
used in subsequent API calls to perform specific operations on the Scalar Rate.

In case of failure, undef is returned.

Possible failure cases are:

DCA Programmer’s Guide, E89013 Revision 01, January 2018 92

CONFIDENTIAL — ORACLE RESTRICTED

e No Custom MEAL with the specified name is currently defined.

e A Custom MEAL with that name exists, but either the differentiation process is not yet completed, or

the un-differentiation process was initiated.
e A Custom MEAL with that name exists, but it is not a Scalar Rate.
Purpose: DCA can peg a Scalar Rate Custom MEAL.

Prototype:
$err = Sall Rate->peg();

where $all Rate is a valid Scalar Rate Custom MEAL object.

The API call returns 1 if success and undef if the operation on the underlying Comcol object has failed.

Purpose: DCA can read the current value of a Scalar Rate Custom MEAL.
Prototype:

$val = $all Rate->readRate();
where $all Rate is a valid Scalar Rate Custom MEAL object.

The API call returns an integer representing the current value in case of success and undef if the
operation on the underlying Comcol object has failed.

Purpose: DCA can read the average value of a Scalar Rate Custom MEAL.
Prototype:

$val = S$all Rate->readAvgRate();
where $all Rate is a valid Scalar Rate Custom MEAL object.

The API call returns an integer representing the average value in case of success and undef if the
operation on the underlying Comcol object has failed.

Purpose: DCA can determine the current severity of the alarm associated to an Scalar Rate template.
Prototype:
$err = $all Rate->getSeverity();
where $all Rate is a valid Scalar Rate Custom MEAL object.
The API call returns:

dca::meal::Critical, dca::meal::Major, dca::meal::Minor,
dca::meal::Cleared

undef if the operation on the underlying Comcol object has failed.
Note: The severity values are defined as:

use constant {

Cleared => 0,
Info =1,
Minor = 2,
Major => 3,
Critical => 4,

}i
which enables comparing them. For instance:

if ($all Rate->getSeverity() >= dca::meal::Major)

is true if the severity is Major or Critical and is false if the severity if Minor. This also applies to
Basic as well as arrayed templates.

DCA Programmer’s Guide, E89013 Revision 01, January 2018

93

CONFIDENTIAL — ORACLE RESTRICTED

Purpose: DCA can bind to an Arrayed Rate Custom MEAL by referring to it by the Custom MEAL
configured name.

Prototype:
my S$per Rate = new dca::meal::arrayedRate (“MyArrayedRate");

where “MyArrayedRate” is the name specified when differentiating a Custom MEAL template of type
Rate and measurement type Arrayed.

The API call returns a valid Custom MEAL object in case of success. The Custom MEAL object may be
used in subsequent API calls to perform specific operations on the Arrayed Rate.

In case of failure, undef is returned.
Possible failure cases are:

e No Custom MEAL with the specified name is currently defined.

e A Custom MEAL with that name exists, but either the differentiation process is not yet completed, or
the un-differentiation process was initiated.

e A Custom MEAL with that name exists, but it is not an Arrayed Rate.
Purpose: DCA can peg a specific index of an Arrayed Rate Custom MEAL.

Prototype:
$err = Sper Rate->peg(S$index);
where $sper Rate is a valid Arrayed Rate Custom MEAL object and $index is the index to be pegged.

The API call returns 1 if success and undef if either the operation on the underlying Comcol object has
failed or the index value is negative.

Purpose: DCA can read the current value of a specific index of an Arrayed Rate Custom MEAL.
Prototype:
$val = Sper Rate->readRate(Sindex);

where $per Rate is a valid Arrayed Rate Custom MEAL object and $index is the index the current
value of which is read.

The API call returns an integer representing the current value of the specified index in case of success
and undef if either the operation on the underlying Comcol object has failed or the index value is
negative.

Purpose: DCA can read the average value of a specific index of an Arrayed Rate Custom MEAL.
Prototype:
$val = Sper Rate->readAvgRate (Sindex);

where $sper Rate is a valid Arrayed Rate Custom MEAL object and $index is the index the average
value of which is pegged.

The API call returns an integer representing the average value of the specified index in case of success
and undef if either the operation on the underlying Comcol object has failed or the index value is
negative.

Purpose: DCA can determine the current severity of the alarm associated to an Arrayed Rate template:
Prototype:
Serr = $per Rate->getSeverity($index);

where $sper Rate is a valid Arrayed Rate Custom MEAL object and $index identifies the particular
index the alarm status of which is read.

DCA Programmer’s Guide, E89013 Revision 01, January 2018 94

CONFIDENTIAL — ORACLE RESTRICTED

The API call returns:

dca::meal::Critical, dca::meal::Major, dca::meal::Minor,
dca::meal::Cleared

undef if either the operation on the underlying Comcol object has failed or the index value is negative.

11.6.3 Basic Template

Purpose: DCA can bind to a Scalar Basic Custom MEAL by referring to it by the Custom MEAL
configured name.

Prototype:
my $all Size = new dca::meal::basic(“MyBasic");

where “MyBasic” is the name specified when differentiating a Custom MEAL template of type Basic
and measurement type Scalar.

The API call returns a valid Custom MEAL object in case of success. The Custom MEAL object may be
used in subsequent API calls to perform specific operations on the Scalar Basic template.

In case of failure, undef is returned.
Possible failure cases are:

¢ No Custom MEAL with the specified name is currently defined.

e A Custom MEAL with that name exists, but either the differentiation process is not yet completed, or
the un-differentiation process was initiated.

e A Custom MEAL with that name exists, but it is not a Scalar Basic.
Purpose: DCA can set the value of a Scalar Basic Custom MEAL.

Prototype:
$Serr = $all Size->setValue ($value);

where $all Size is a valid Scalar Basic Custom MEAL object and $value is the value the Scalar Basic
Custom MEAL is set to.

The API call returns 1 if success and undef if the operation on the underlying Comcol object has failed.
Purpose: DCA can increment the value of a Scalar Basic Custom MEAL.
Prototype:

$err = $all Size->increment ($count);

where $all Size is a valid Scalar Basic Custom MEAL object and $count is the value the Scalar Basic
Custom MEAL is incremented with.

The API call returns 1 if success and undef if the operation on the underlying Comcol object has failed.
Purpose: DCA can decrement the value of a Scalar Basic Custom MEAL.
Prototype:

$err = $all Size->decrement ($count);

where $all Size is a valid Scalar Basic Custom MEAL object and $count is the value the Scalar Basic
Custom MEAL is decremented with.

The API call returns 1 if success and undef if the operation on the underlying Comcol object has failed.
Purpose: DCA can read the current value of a Scalar Basic Custom MEAL.

Prototype:

DCA Programmer’s Guide, E89013 Revision 01, January 2018 95

CONFIDENTIAL — ORACLE RESTRICTED

$val = $all Size->getValue();
where $all Size is avalid Scalar Basic Custom MEAL object.

The API call returns an integer representing the current value in case of success and undef if the
operation on the underlying Comcol object has failed.

Purpose: DCA can read the average value of a Scalar Basic Custom MEAL.
Prototype:

$val = $all Size->getAvgValue();
where $all_Size is a valid Scalar Basic Custom MEAL object.

The API call returns an integer representing the average value in case of success and undef if the
operation on the underlying Comcol object has failed.

Purpose: DCA can determine the current severity of the alarm associated to an Scalar Basic template.
Prototype:
$err = $all Size->getSeverity();
where $all Size is a valid Scalar Basic Custom MEAL object.
The API call returns:
dca::meal::Critical, dca::meal::Major, dca::meal::Minor, dca::meal::Cleared
undef if the operation on the underlying Comcol object has failed.

Purpose: DCA can bind to an Arrayed Basic Custom MEAL by referring to it by the Custom MEAL
configured name.

Prototype:
my $per Size = new dca::meal::arrayedBasic (“MyArrayedBasic");

where “MyArrayedBasic” is the name specified when differentiating a Custom MEAL template of type
Basic and measurement type Arrayed.

The API call returns a valid Custom MEAL object in case of success. The Custom MEAL object may be
used in subsequent API calls to perform specific operations on the Arrayed Basic template.

In case of failure, undef is returned.
Possible failure cases are:

¢ No Custom MEAL with the specified name is currently defined.

e A Custom MEAL with that name exists, but either the differentiation process is not yet completed, or
the un-differentiation process was initiated.

e A Custom MEAL with that name exists, but it is not an Arrayed Basic.
Purpose: DCA can set the value of an Arrayed Basic Custom MEAL.

Prototype:
Serr = Sper Size->setValue(S$value, S$Sindex);

where $per Size is a valid Arrayed Basic Custom MEAL object, $index is the index the value of which
is set and $value is the value it is set to.

The API call returns 1 if success and undef if either the operation on the underlying Comcol object has
failed or the index value is negative.

Purpose: DCA can increment the value of an Arrayed Basic Custom MEAL.

Prototype:

DCA Programmer’s Guide, E89013 Revision 01, January 2018 96

CONFIDENTIAL — ORACLE RESTRICTED

$err = Sper Size->increment ($Scount, $index);

where $per Size is a valid Arrayed Basic Custom MEAL object, $index is the index the value of which
is incremented and $count is the value it is incremented with.

The API call returns 1 if success and undef if either the operation on the underlying Comcol object has
failed or the index value is negative.

Purpose: DCA can decrement the value of an Arrayed Basic Custom MEAL.
Prototype:
$err = Sper Size->decrement (Scount, $index);

where $per Size is a valid Arrayed Basic Custom MEAL object, $index is the index the value of which
is decremented and Scount is the value it is decremented with.

The API call returns 1 if success and undef if either the operation on the underlying Comcol object has
failed or the index value is negative.

Purpose: DCA can read the current value of an Arrayed Basic Custom MEAL.
Prototype:
$val = Sper Size->getValue (Sindex);

where sper Size is a valid Arrayed Basic Custom MEAL object and $index is the index the value of
which is read.

The API call returns an integer representing the current value of the specified index in case of success
and undef if either the operation on the underlying Comcol object has failed or the index value is
negative.

Purpose: DCA can read the average value of an Arrayed Basic Custom MEAL.
Prototype:
$val = Sper Size->getAvgValue (Sindex);

where sper Size is a valid Arrayed Basic Custom MEAL object and $index is the index the average
value of which is read.

The API call returns an integer representing the average value of the specified index in case of success
and undef if either the operation on the underlying Comcol object has failed or the index value is
negative.

Purpose: DCA can determine the current severity of the alarm associated to an Arrayed Basic template.
Prototype:
$err = Sper Size->getSeverity(Sindex);

where sper Size is a valid Arrayed Basic Custom MEAL object and $index identifies the particular
index the alarm status of which is read.

The API call returns:

dca::meal::Critical, dca::meal::Major, dca::meal::Minor,
dca::meal::Cleared

undef if either the operation on the underlying Comcol object has failed or the index value is negative.

11.6.4 Event Template

Purpose: DCA can bind to an Event Custom MEAL by referring to it by the Custom MEAL configured
name.

DCA Programmer’s Guide, E89013 Revision 01, January 2018 97

CONFIDENTIAL — ORACLE RESTRICTED

Prototype:
my SerrorEvent = new dca::meal::event (“MyEvent");
where “MyEvent” is the name specified when differentiating a Custom MEAL template of type Event.

The API call returns a valid Custom MEAL object in case of success. The Custom MEAL object may be
used in subsequent API calls to perform specific operations on the Event.

In case of failure, undef is returned.
Possible failure cases are:

e No Custom MEAL with the specified name is currently defined.

e A Custom MEAL with that name exists, but either the differentiation process is not yet completed, or
the un-differentiation process was initiated.

e A Custom MEAL with that name exists, but it is not a Event.

Purpose: DCA can generate an event (Info severity), raise an alarm (Minor, Major, Critical severity) and
clear an alarm (Clear severity).

Prototype:
Serr = SerrorEvent->log($severity, S$addInfoText);

where SerrorEvent is a valid Event Custom MEAL object, $severity is one of the possible values
(dca::meal::Critical,dca::meal::Major,dca::meal::Minor, dca::meal::Cleared), and
SaddInfoText is the text that should be included in the alarm’s additional information field.

The API call returns 1 if success and undef if the operation on the underlying Comcol object has failed.
Purpose: DCA can determine whether an event or alarm is throttled before trying to raise it (again).
Prototype:

Serr = $errorEvent->isThrottled($severity);

where SerrorEvent is a valid Event Custom MEAL object and $Sseverity is one of the possible values
(dca::meal::Critical, dca::meal::Major, dca::meal::Minor, dca::meal::Info).

The API call returns:

e 1 if the event/alarm is throttled.

e 0if the event/alarm is not throttled.

e undef if the operation on the underlying Comcol object has failed.
Purpose: DCA can determine the current severity of an event or alarm:

Prototype:

Serr = $SerrorEvent->getSeverity();
where SerrorEvent is a valid Event Custom MEAL object.
The API call returns:

dca::meal::Critical, dca::meal::Major, dca::meal::Minor, dca::meal::Info,
dca::meal::Cleared

undef if the operation on the underlying Comcol object has failed.

11.7 U-SBR API

The U-SBR API enables DCA to create, read, update, and delete data in a U-SBR DB. As described in
Section 6.3.6.2 the U-SBR API calls work asynchronously and a callback subroutine is necessary to fetch
the result of the query.

DCA Programmer’s Guide, E89013 Revision 01, January 2018 98

CONFIDENTIAL — ORACLE RESTRICTED

11.7.1 The Prototype of Queries and Query Results

This section describes the common structure of the U-SBR API functions and how the results of a U-SBR
guery can be retrieved in the Perl script.

Section 11.7.2 further describes the particularities of each individual U-SBR API function.

11.7.1.1 Specifying the Query

All the U-SBR API functions share a common prototype:

$err = dca::sbr::sbrInstance(<usbr logical name>)-><API function> (
<key type>, <key data type>, Skey,
<value data type>, $value,
<callback subroutine>,
[<flags>]);
where:

e <usbr logical name> is a string (a constant value or a scalar variable) containing the logical
name of the U-SBR DB the query is sent to. The logical names for the physical U-SBR DBs are
configured from Main Menu: DCA Framework > <DCA Name> > Application Control, by selecting
the DCA version and clicking on SBR DB Name Mapping.

e <API function> isone of: create, createOrRead, read, update, concurrentUpdate, and delete,
respectively.

e <key type> is typically a constant value defined by DCA. It distinguishes between different key
types DCA may use (for example, IMSI, NAI, IP, IP_SRC, etc.). For example, the key value "fred" of
type NAl is a different key from 66.72.65.64 of type IP, even though they have the same binary
representation.

e <key data type> is pre-defined constant that describes the data type of the key and must be one
of:

e dca:sbr::KeyDataType::BCD — the key is a scalar.
o dca:sbr:KeyDataType::UINT32 —the key is a scalar.
e dca:sbr::KeyDataType::INT64 — the key is a scalar.
e dca:sbr::KeyDataType::STRING — the key is a scalar.
o dca:sbr::KeyDataType::IPv4 — the key is a NetAddr::IP object.
e dca:sbr::KeyDataType::IPv6 — the key is a NetAddr::IP object.
Note: There is no explicit data type for float numbers; float numbers are converted to strings.
e Skey is a Perl variable that holds the key part of the key-value pair to be created, read, updated or
deleted.

e <value data type> is pre-defined constant that describes the data type of the key and must be
one of:

e dca:sbr::StateDataType::BCD — the key is a scalar.

e dca:sbr::StateDataType::UINT32 — the key is a scalar.

e dca:sbr:StateDataType::STRING — the key is a scalar, an array reference or a hash reference.
Note: Arrays and hashes are encoded into JSON and stored in the U-SBR DB in string format.

e dca::sbr::StateDataType: :IPv4 —the key is a NetAddr::IP object.
e dca::sbr::StateDataType: :IPv6 —the key is a NetAddr::IP object.
Note: There is no explicit data type for float numbers; float numbers are converted to strings.

DCA Programmer’s Guide, E89013 Revision 01, January 2018 99

CONFIDENTIAL — ORACLE RESTRICTED

e Svalue is a Perl variable that holds the value part of the key-value pair to be written into the U-SBR
(via create or update operations). Note, therefore, that read and delete do not specify a $value
parameter and as a result no <value data_ type> parameter.

e <callback subroutine> is a string representing the name of the Perl subroutine that are invoked
by the DCA framework to deliver the query result,

e <flags> is an optional OR-mask of predefined flags that may apply to certain API functions.
The API call returns:

o 1 if the parameters are successfully parsed and encoding into a Stack Event.

¢ Note that, because the API call works asynchronously, at this stage the query has not been sent yet,
its outcome cannot be known, Serr merely tells whether a query could be successfully built.

e undef if parsing or encoding the parameters fails.

11.7.1.2 Retrieving the Query Result

The result of a U-SBR query can be retrieved in the callback function by using the
dca::sbr::result () class. An error code is always returned and some queries also return data
(consisting of the data type along with the data itself):

e $err_code = dca::sbr::result()->code();

Retrieves the error code. If the error codes indicates success (dca: : sbr: :ResultCode: : Ok) then
some API functions also return data, which can be retrieved using the dataType () and data ()
methods described below.

A number of error codes are common to all U-SBR API functions:

e dca::sbr::ResultCode: :0k — indicates the query has successfully executed the intended
operation;

e dca::sbr::ResultCode: :DBError — an error occurred on the SBR side that prevented the query
to be executed;

e dca::sbr::ResultCode::SendError —an error occurred when attempting to send the query,
typically because of ComAgent overload (ComAgent related alarms are raised in this case);

e dca::sbr::ResultCode: :LogicalNameMismatch — indicates that no mappings to physical U-
SBR DBs have been configured for the logical name used in the <usbr logical name>
parameter. Alarm 33313 is raised;

e dca::sbr::ResultCode: :AccessError —occurs when (i) the physical U-SBR DBs, to which the
<usbr logical name> parameter is mapped to, are owned by another DCA (see Main Menu:
SBR > Configuration > SBR Databases, Owner Application column) and (ii) the current DCA is
configured to access the physical U-SBR DBs owned by other DCAs only in read-only mode (see
Main Menu: DCA Framework > <DCA Name> > General Options, Read-Only U-SBR Access as
Guest option);

e dca::sbr::ResultCode: :MaxStateSize — the size of either the key or the data DCA attempts
to look up or respectively store in the U-SBR DB, exceeds the configured maximum sizes (Main
Menu: DCA Framework > Configuration, Maximum Size of Application State and respectively
Maximum Size of the Key options);

e dca::sbr::ResultCode: :MaxEventReached —the maximum number of U-SBR queries that a
Diameter message event handler is allowed to send has been exceeded (see Main Menu: DCA
Framework > <DCA Name> > General Options, Max. U-SBE Queries per Message option).

A few error codes (dca::sbr::ResultCode::GenericErrRecExists,
dca::sbr::ResultCode::GenericErrRecNotFound and dca::sbr::ResultCode::GenericErrRecObsoleted) are
specific to certain U-SBR API functions.

$data type = dca::sbr::result()->dataType();

DCA Programmer’s Guide, E89013 Revision 01, January 2018 100

CONFIDENTIAL — ORACLE RESTRICTED

If the result contains data, then datatype() returns the data type of the stored data, that is, one of:
dca::sbr::StateDataType: :BCD, dca::sbr::StateDataType::UINT32,
dca::sbr::StateDataType: :INT64, dca::sbr::StateDataType::STRING,
dca::sbr::StateDataType: :IPv4, dca::sbr::StateDataType::IPv6;

If the result contains no data, then datatype () returns undef.
Sdata = dca::sbr::result()->datal();
If the result contains data, then data () returns the stored data.

If the result contains no data, then data () returns undef.

11.7.2 The U-SBR API Functions

Purpose: Attempts to create a key-value record in a U-SBR DB or fails if a record with the same key
already exists.

Prototype: (see also Section 11.7.1.1)

Serr = dca::sbr::sbrinstance (<usbr logical name>)->create(
<key type>, <key data type>, Skey,
<value data type>, $value,
<callback subroutine>);

Query Results: The possible result of the create API function are described in the table below (see also
Section 11.7.1.2):

dca::sbr::result() dca::sbr::result()
dca::sbr::result()->code() ->dataType() ->data()
dca::sbr::ResultCode::Ok N/A* N/A
(The record does not exist and was created)
dca::sbr::ResultCode::DBError, N/A N/A
dca::sbr::ResultCode::SendError
dca::sbr::ResultCode::LogicalNameMismatch
dca::sbr::ResultCode::AccessError
dca::sbr::ResultCode::MaxStateSize
dca::sbr::ResultCode::MaxEventReached
dca::sbr::ResultCode::ErrRecEXxists N/A N/A

Purpose: Creates a key-value record in a U-SBR DB or returns the record, if a record with the same key
already exists.

Prototype: (see also Section 11.7.1.1)

Serr = dca::sbr::sbrinstance (<usbr logical name>)->createOrRead (
<key type>, <key data type>, Skey,
<value data type>, $value,
<callback subroutine>);

Query Results: The possible result of the create API function are described in the table below (see also
Section 11.7.1.2):

! The programmer does not rely on the returned variable being defined, undefined, or having any
particular value.

DCA Programmer’s Guide, E89013 Revision 01, January 2018 101

CONFIDENTIAL — ORACLE RESTRICTED

dca::sbr::result() dca::sbr::result()
dca::sbr::result()->code() ->dataType() ->data()
dca::sbr::ResultCode::Ok N/A N/A
(The record does not exist and was created)
dca::sbr::ResultCode::DBError, N/A N/A
dca::sbr::ResultCode::SendError
dca::sbr::ResultCode::LogicalNameMismatch
dca::sbr::ResultCode::AccessError
dca::sbr::ResultCode::MaxStateSize
dca::sbr::ResultCode::MaxEventReached
dca::sbr::ResultCode::ErrRecEXxists The data type of the The existing record
existing record

Purpose: Reads the value associated to a key from the U-SBR DB, or fails if the key is not found.

Prototype: (see also Section 11.7.1.1)

$err = dca::sbr::sbrInstance (<usbr logical name>)->read(

<key type>, <key data type>, Skey,
<callback subroutine>);

Note that no svalue parameter is present since no value is supposed to be written into the U-SBR DB.

Query Results: The possible result of the create API function are described in the table below (see also

Section 11.7.1.2):

dca::sbr::result()->code()

dca::sbr::result()
->dataType()

dca::sbr::result()
->data()

dca::sbr::ResultCode::Ok

(The record exists and was read)

The data type of the
existing record

The existing record

dca::
dca::
dca::
dca::
dca::
dca::

sbr::
sbr::
sbr::
sbr::
sbr::
sbr::

ResultCode:
ResultCode:
ResultCode:
ResultCode:
ResultCode:
ResultCode:

:DBError,

:SendError
:LogicalNameMismatch
:AccessError
:MaxStateSize
:MaxEventReached

N/A

N/A

dca::

sbr::

ResultCode:

:ErrRecNotFound

N/A

N/A

Purpose: Attempts to update the value associated with a key in the U-SBR DB or fails if a record with the
key could not be found.

Prototype: (see also Section 11.7.1.1)

Serr = dca::sbr::sbrinstance (<usbr logical name>)->update (
<key type>, <key data type>, Skey,
<value data type>, $value,
<callback subroutine>);

Query Results: The possible result of the create API function are described in the table below (see also
Section 11.7.1.2):

dca::sbr::result()->code()

dca::sbr::result()
->dataType()

dca::sbr::result()
->data()

DCA Programmer’s Guide, E89013 Revision 01, January 2018

102

CONFIDENTIAL — ORACLE RESTRICTED

dca::sbr::result()->code()

dca::sbr::result()
->dataType()

dca::sbr::result()
->data()

dca::sbr::ResultCode::Ok
(The record exists and was updated)

N/A

N/A

dca::
dca::
dca::
dca::
dca::
dca::

sbr::
sbr::
sbr::
sbr::
sbr::
sbr::

ResultCode:
ResultCode:
ResultCode:
ResultCode:
ResultCode:
ResultCode:

:DBError,

:SendError
:LogicalNameMismatch
:AccessError
:MaxStateSize
:MaxEventReached

N/A

N/A

dca::

sbr::

ResultCode:

:ErrRecNotFound

N/A

N/A

Purpose: Attempts to update the value associated with a key that was previously retrieved (typically
using a read or a createOrRead operation) from the U-SBR DB. It fails if the key-value record has been
updated in the meantime by a concurrent update query.

Prototype: (see also Section 11.7.1.1)

Serr

= dca::sbr::sbrinstance (<usbr logical name>)->concurrentUpdate (

<key type>,
<value data type>,

<key data_ type>,
Svalue,

skey,

<callback subroutine>);

Query Results: The possible result of the create API function are described in the table below (see also
Section 11.7.1.2):

dca::sbr::result()

dca::sbr::result()

dca::sbr::result()->code() ->dataType() ->data()
dca::sbr::ResultCode::Ok N/A N/A
(The record exists and was successfully updated)

dca::sbr::ResultCode::DBError, N/A N/A
dca::sbr::ResultCode::SendError

dca::sbr::ResultCode::LogicalNameMismatch

dca::sbr::ResultCode::AccessError

dca::sbr::ResultCode::MaxStateSize

dca::sbr::ResultCode::MaxEventReached

dca::sbr::ResultCode::ErrRecNotFound N/A N/A
dca::sbr::ResultCode::ErrRecObsoleted The data type of the The updated record

(The record exists but was updated by a
concurrent update query. DCA re-processes the
returned value and retries the operation)

updated record

Purpose: Deletes a key-value record from the U-SBR DB, or fails if the key is not found.

Prototype: (see also Section 11.7.1.1)

Serr

= dca::sbr::sbriInstance (<usbr logical name>)->delete (
<key data type>,

<key type>,

Skey,

<callback subroutine>);

Note that no $value parameter is present since no value is supposed to be written into the U-SBR DB.

DCA Programmer’s Guide, E89013 Revision 01, January 2018

103

CONFIDENTIAL — ORACLE RESTRICTED

Query Results: The possible result of the create API function are described in the table below (see also
Section 11.7.1.2):

dca::sbr::result()->code()

dca::sbr::result()
->dataType()

dca::sbr::result()
->data()

dca::sbr::ResultCode::Ok
(The record exists and was deleted)

N/A

N/A

dca::
dca::
dca::
dca::
dca::
dca::

sbr::
sbr::
sbr::
sbr::
sbr::
sbr::

ResultCode:
ResultCode:
ResultCode:
ResultCode:
ResultCode:
ResultCode:

:DBError,

:SendError
:LogicalNameMismatch
:AccessError
:MaxStateSize
:MaxEventReached

N/A

N/A

dca::

sbr::

ResultCode:

:ErrRecNotFound

N/A

N/A

11.8 Peer Information

This section describes the APIs to fetch the peer information.

11.8.1 Check for Configured Peer

A DCA can check if a Peer Name is configured in the system (SO).

Prototype:

Sstatus = dca::peerInfo::isPeerExists (<Peer name>);

where <Peer Name> is the name of configured peer in the system (SO) and $status is 1 if the <Peer

Name> is configured in the SO GUI or 0 if <Peer Name> is not configured.

11.8.2 Fethc the Originator Peer

When receiving a Diameter message, DCA can fetch the originator of the message.

Prototype:

SpeerName = dca::peerInfo::getOriginPeerName () ;

where SpeerName is the Peer Node name as configured in the SO GUI or undef if there is a failure
while fetching the peer node detalil.

DCA Programmer’s Guide, E89013 Revision 01, January 2018

104

CONFIDENTIAL — ORACLE RESTRICTED

12. Interaction with IDIH

Table 4 illustrates the IDIH events generated by DCA.

Table 4: IDIH Events
Event
ID Event Type Scope | Instance Data When Recorded
2300 | Diameter Routine App e DCA short name The Diameter Request
Request Invocation Data Subroutine name processing routine of a
processing * DCA is invoked by the DCA
routine invoked framework.
2301 | Diameter Routine App e DCA short name The Diameter Answer
Answer Invocation Data ; processing routine of a
. Subroutine name >
processing * DCA is invoked by the DCA
routine invoked framework.
2302 | U-SBR Query U-SBR App e DCA short name An U-SBR query is
send Query Data e Stack Event ID prepared by a DCA.
(create, read,
update, ...)
e DAL ID of the
application owning
the U-SBR DB
e Keyvalue
o Key type
2303 | Callback Routine App e DCA short name An U-SBR query returns a
invoked Invocation Data e Callback name result and a callback
subroutine is invoked.
2304 | Subroutine Execution App e DCA short name The scripting language
name not found | Exception Data e Subroutine name interpreter returns an error
indicating the subroutine
doesn’t exist.
2305 | Runtime error Execution App e DCA short name The scripting language
Exception Data e Subroutine name | interpreter returns an error
indicating the a runtime
e FError message error occurred.
returned by the
interpreter
2306 | Debug Debug App ¢ Adebug message | A module included by
message Data default by the DCA

framework enables DCA to
generate debug messages.

DCA Programmer’s Guide, E89013 Revision 01, January 2018

105

CONFIDENTIAL — ORACLE RESTRICTED

Event
ID Event Type Scope | Instance Data When Recorded
2307 | U-SBR Query U-SBR App e DCA short name An U-SBR query result is
Result received | Query Data e Stack Event ID received by a DCA.
(create, read,
update, ...)
e Data value
e Data type
e Query Result
return code
2308 | U-SBR Query U-SBR App e DCA short name Sending the U-SBR query
send failed Query Data e Error code has failed because

business logic related
issues (for example, max.
limit of queries has been
reached, L2P mapping
error, etc.), due to
ComAgent related issues
(for example, routing) or
due to transport issues (for
example, timeout).

Except for event 2306, which is explicitly generated by the debug API functions, and event 2305, which is
generated when a runtime error is encountered, all other events are generated automatically by the DCA
framework when a specific point in the control flow is reached. For instance, Figure 79 illustrates the IDIH
event trace of a U-SBR query from the moment the query is initiated until the callback is invoked.

DCA Programmer’s Guide, E89013 Revision 01, January 2018

106

CONFIDENTIAL — ORACLE RESTRICTED

Immediate error (NQ TTRs are

3 {usually N
Sc"pt API Gall parameter-related - gengated in
Success | issues) this case)

|
Y
TTR 2302
+ Error (max. queries
limit reached, L2P
processSbrQuery mapping error, etc.
Success l
Send error
send
Success :
|
y
SBR Response

* Y

TTR 2308
TTR 2307

v

> TTR 2303

v

Script Callback

Figure 79: IDIH Event Trace of an U-SBR Query

The event 2302 is preceded by event 2300, 2301, or 2303, depending on whether the U-SBR query has
been initiated from a Diameter request event handler, from a Diameter answer event handler or,
respectively, from the callback subroutine of a previous U-SBR query like for instance when a concurrent
update is retried.

13. Best Practices

This chapter summarizes the basic rules to follow when writing a DCA.

13.1 The Main Part of the Perl Script

The main part of the Perl script is executed only once when the Perl script is compiled. Itis, therefore, the

right place to perform sanity checks and post-process DCA configuration data. For instance the code
below:

if (! defined($dca::appConfig{XYZ Table}) ||
("ARRAY" ne ref ($Sdca::appConfig{XYZ Table}))) {
dca::application::logInfo("Missing XYZ configuration table");

die "Missing XYZ configuration table";

DCA Programmer’s Guide, E89013 Revision 01, January 2018 107

CONFIDENTIAL — ORACLE RESTRICTED

checks that the XYZ_Table exists and that it is a valid reference to an array. Note that single-row
configuration tables are references to hash tables (for example, use HASH instead of ARRAY).

If the validation fails, then Alarm 33309 Script Compilation Error is raised when the Perl script is compiled.

DCA configuration data for multi-row (that is, not single-row) tables is stored in a Perl variable of type
array; in our example $dca: :appConfig{XYZ Table} is areference to such an array. Arrays are
however very inefficient data structures to perform real-time lookups because they require looping
through them each time. For this reason, depending on which fields DCA uses to look up the
configuration data in real time, DCA would typically post-process the configuration data (in the Perl script
main part) by going record-by-record through it and copying each record into a separate hash table where
the tags are the values of the lookup field. If necessary multiple such hash table may be prepared for
real-time use, or other data structured (for example, trees) may be created from the initial configuration
data.

Post-processing increases the memory usage (with the new data structures that are created) and
increases the Perl script compilation time (because the execution of the main part is always triggered by a
successful Perl script compilation and therefore it may be regarded as a side effect to compiling the Perl
script). However, the real-time performance gain is likely to be significant — probably orders of magnitude
depending on DCA configuration data size.

13.2 Perl Global Variables

Do not use Perl global variables (defined in the main part of the script) to pass data between the various
event handlers and callbacks in a DCA. This is because the event handlers and callbacks are executed
on demand by a pool of Perl interpreter threads, which means:

1. Event handlers and callbacks that process the same Diameter message may be executed by different
Perl interpreters;

2. The same Perl interpreter executes event handlers and callbacks that process many different
Diameter messages.

Use instead the transaction context variables defined in Section 11.2.2.

13.3 Returning Control from a Perl Subroutine

The control flow paths of an event handler or callback end in one of the following ways:
1. Adca::action APIcall.
2. An U-SBR query.
The example below provides an example of how an event handler or callback ends with an U-SBR
query:
my Sresult = dca::sbr::sbrInstance("sbr")->createOrRead ($key type,
dca::sbr::KeyDataType::INT64, $imsi,
dca::sbr::StateDataType: :STRING, S$sbr state,
"create or read nonpref cb");
check for "synchronous" error
if (!defined (Sresult)) {

could not create the sbr request - depending on the business
logic,

log an error message and fall back, or raise runtime error
alarm:

DCA Programmer’s Guide, E89013 Revision 01, January 2018 108

CONFIDENTIAL — ORACLE RESTRICTED

die "could not create the SBR request";

} else {
the processing continues asynchronously
in the "create or read nonpref cb"
exit;

}

Note that no dca::action API call follows an U-SBR query because the U-SBR query is not going to be
sent at all in this case: a dca::action API call ends the processing of the Diameter message, no query
and no callback are executed any longer for the respective Diameter message.

3. A die statement.

Alarm 33304 DCA Runtime Errors is raised and the Diameter message is routed as indicated by the
configuration (see Section 9.4). The text specified as a parameter to the die statement is included in
the alarm's additional information.

4. The control flow reaches (i) a return statement or (ii) the closing bracket that ends the Perl
subroutine scope. In this case, the action taken by the DCA framework depends on the value
returned from the respective Perl subroutine; in the latter case the return value is the result of the last
executed evaluation before the ending bracket is reached:

a. If the return value is grater or equal to zero, the Diameter message is forwarded.

b. If the return value is less than zero, Alarm 33304 DCA Runtime Errors is raised and the Diameter
message is routed as indicated by the configuration (see Section 9.4).

13.4 Callbacks

The first thing to do in a callback is to check the result code. Section 11.7.1.2 describes the error codes
that apply to all U-SBR API functions. For most DCAs, it is enough to check if the U-SBR query was
successful (dca: :sbr: :ResultCode: : Ok was returned) and continue processing and to abort
execution (by invoking die) in all other cases.

Note, however, that individual U-SBR queries have specific error codes — these are highlighted with a red
background throughout Section 11.7.2. Some of these specific error codes do not necessary involve that
the processing is aborted; for instance: dca: : sbr: :ResultCode: :ErrRecExists in case of a
createOrRead query indicates that the query performed "read" rather than a "create”,
dca::sbr::ResultCode: :ErrRecObsoleted in case of a concurrentUpdate indicates that the
query is repeated.

13.5 Sending multiple U-SBR Queries

There might be situations when processing a Diameter message requires a sequence of U-SBR queries
(for example, a read and, based on the state data returned, also an update). Itis not possible to send
concurrent U-SBR queries, that is., more than one U-SBR query from the same Perl subroutine (event
handler or callback); if multiple U-SBR queries are initiated from a Perl subroutine, only the last one is
sent.

Multiple U-SBR queries (during the processing of the same Diameter message) are sent sequentially,
meaning, the event handler initiates the first U-SBR query, the callback of the first U-SBR query initiates
the second U-SBR query, the callback of the second U-SBR query initiates the third U-SBR query, etc.,
the callback of the last U-SBR query routes the Diameter message (for example, by using a
dca::action API call).

DCA Programmer’s Guide, E89013 Revision 01, January 2018 109

CONFIDENTIAL — ORACLE RESTRICTED

13.6 Accessing Lower Layer Data from Mediation

DCA EDL API (see Section 11.1) and part of the Routing API (see Section 11.4 setART and setPRT) are
similar to API offered by the Mediation feature. However, there are a couple of API functions supported
by Mediation that are not available in DCA. This is because Mediation is invoked in the context of the
Diameter Routing Layer (DRL), whereas DCA operates at the application layer (that is, one layer above
DRL). These API calls are:

Sparam->ingressConnectionName () ;

Return the name of the ingress connection if available.
Sparam->ingressPeerName ();

Return the name of the ingress peer if available.

(where $Sparam is retrieved as described in Section 11.1.1) and may be needed if DCA business logic
depends on the connections or peers the Diameter messages are received from. This information may
be made available to DCA through Internal Variables, using the following procedure: (i) a Mediation script
uses the above API calls to retrieve the ingress connection/peer and (ii) writes it into an Internal Variable,
from where (iii) DCA can read when the event handler is invoked.

Note that the following API functions:
Sparam->egressConnectionName () ;
Return the name of the egress connection if available.
Sparam->egressPeerName () ;
Return the name of the egress peer if available.

are not usable in DCA because the routing decision is made after DCA event handlers complete the
execution (and the message is returned back to DRL).

13.7 Performance Tuning

DCAs may require performance tuning depending upon the complexity of business logic and need for
MPS.

Users can determine the need to do performance tuning based on:
e The number of DcaRequestTaskThr and DcaAnswerTaskThr threads needed on a DA-MP, which
depends on whether DCA performs computation on:
o Diameter request leg of the diameter transaction.
o Diameter answer leg of the diameter transaction.
e Both diameter request and diameter answer leg of the diameter transaction.

e The number of DcaSbrEventTaskThr threads, which must be directly proportional with number of
SBR transactions per diameter transactions performed by DCA.

e The number of SBR SGs in a U-SBR DB (resource domain) is based on how many SBR transactions
per second are planned to be processed by the respective U-SBR DB, which depends on DCA
requirements.

Note: Please contact the customer support team for tuning the performance parameters.

DCA Programmer’s Guide, E89013 Revision 01, January 2018 110

